numpy.random.
rayleigh
(scale=1.0, size=None)¶
Draw samples from a Rayleigh distribution.
The and Weibull distributions are generalizations of the Rayleigh.
Parameters:Scale, also equals the mode. Should be >= 0. Default is 1.
Output shape. If the given shape is, e.g., (m, n, k)
, then m * n * k
samples are drawn. If size is None
(default), a single value is returned if scale
is a scalar. Otherwise, np.array(scale).size
samples are drawn.
Drawn samples from the parameterized Rayleigh distribution.
Notes
The probability density function for the Rayleigh distribution is
The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution.
References
Examples
Draw values from the distribution and plot the histogram
>>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)
Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters?
>>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = np.random.rayleigh(modevalue, 1000000)
The percentage of waves larger than 3 meters is:
>>> 100.*sum(s>3)/1000000. 0.087300000000000003
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4