A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.scipy.org/doc/numpy/reference/random/new-or-different.html below:

What’s new or different — NumPy v2.3 Manual

What’s new or different#

NumPy 1.17.0 introduced Generator as an improved replacement for the legacy RandomState. Here is a quick comparison of the two implementations.

In [1]: import numpy.random

In [2]: rng = np.random.default_rng()

In [3]: %timeit -n 1 rng.standard_normal(100000)
   ...: %timeit -n 1 numpy.random.standard_normal(100000)
   ...: 
1.88 ms +- 13.3 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
3.46 ms +- 20.2 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
In [4]: %timeit -n 1 rng.standard_exponential(100000)
   ...: %timeit -n 1 numpy.random.standard_exponential(100000)
   ...: 
919 us +- 12.4 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
2.47 ms +- 23.4 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
In [5]: %timeit -n 1 rng.standard_gamma(3.0, 100000)
   ...: %timeit -n 1 numpy.random.standard_gamma(3.0, 100000)
   ...: 
3.53 ms +- 39.5 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
6.96 ms +- 25.1 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
In [6]: rng = np.random.default_rng()

In [7]: rng.random(3, dtype=np.float64)
Out[7]: array([0.00512656, 0.76054751, 0.5135002 ])

In [8]: rng.random(3, dtype=np.float32)
Out[8]: array([0.13016486, 0.67658764, 0.94141597], dtype=float32)

In [9]: rng.integers(0, 256, size=3, dtype=np.uint8)
Out[9]: array([100, 186,  43], dtype=uint8)
In [10]: rng = np.random.default_rng()

In [11]: existing = np.zeros(4)

In [12]: rng.random(out=existing[:2])
Out[12]: array([0.7695275 , 0.73739323])

In [13]: print(existing)
[0.7695275  0.73739323 0.         0.        ]
In [14]: rng = np.random.default_rng()

In [15]: a = np.arange(12).reshape((3, 4))

In [16]: a
Out[16]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

In [17]: rng.choice(a, axis=1, size=5)
Out[17]: 
array([[ 0,  1,  2,  0,  0],
       [ 4,  5,  6,  4,  4],
       [ 8,  9, 10,  8,  8]])

In [18]: rng.shuffle(a, axis=1)        # Shuffle in-place

In [19]: a
Out[19]: 
array([[ 2,  1,  0,  3],
       [ 6,  5,  4,  7],
       [10,  9,  8, 11]])

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4