A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.scipy.org/doc/numpy/reference/generated/numpy.indices.html below:

numpy.indices — NumPy v2.3 Manual

numpy.indices#
numpy.indices(dimensions, dtype=<class 'int'>, sparse=False)[source]#

Return an array representing the indices of a grid.

Compute an array where the subarrays contain index values 0, 1, … varying only along the corresponding axis.

Parameters:
dimensionssequence of ints

The shape of the grid.

dtypedtype, optional

Data type of the result.

sparseboolean, optional

Return a sparse representation of the grid instead of a dense representation. Default is False.

Returns:
gridone ndarray or tuple of ndarrays
If sparse is False:

Returns one array of grid indices, grid.shape = (len(dimensions),) + tuple(dimensions).

If sparse is True:

Returns a tuple of arrays, with grid[i].shape = (1, ..., 1, dimensions[i], 1, ..., 1) with dimensions[i] in the ith place

Notes

The output shape in the dense case is obtained by prepending the number of dimensions in front of the tuple of dimensions, i.e. if dimensions is a tuple (r0, ..., rN-1) of length N, the output shape is (N, r0, ..., rN-1).

The subarrays grid[k] contains the N-D array of indices along the k-th axis. Explicitly:

grid[k, i0, i1, ..., iN-1] = ik

Examples

>>> import numpy as np
>>> grid = np.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0]        # row indices
array([[0, 0, 0],
       [1, 1, 1]])
>>> grid[1]        # column indices
array([[0, 1, 2],
       [0, 1, 2]])

The indices can be used as an index into an array.

>>> x = np.arange(20).reshape(5, 4)
>>> row, col = np.indices((2, 3))
>>> x[row, col]
array([[0, 1, 2],
       [4, 5, 6]])

Note that it would be more straightforward in the above example to extract the required elements directly with x[:2, :3].

If sparse is set to true, the grid will be returned in a sparse representation.

>>> i, j = np.indices((2, 3), sparse=True)
>>> i.shape
(2, 1)
>>> j.shape
(1, 3)
>>> i        # row indices
array([[0],
       [1]])
>>> j        # column indices
array([[0, 1, 2]])

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4