Modified Bessel function of the first kind, order 0.
Usually denoted \(I_0\).
Argument of the Bessel function.
The modified Bessel function evaluated at each of the elements of x.
Notes
The scipy implementation is recommended over this function: it is a proper ufunc written in C, and more than an order of magnitude faster.
We use the algorithm published by Clenshaw [1] and referenced by Abramowitz and Stegun [2], for which the function domain is partitioned into the two intervals [0,8] and (8,inf), and Chebyshev polynomial expansions are employed in each interval. Relative error on the domain [0,30] using IEEE arithmetic is documented [3] as having a peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000).
References
[1]C. W. Clenshaw, “Chebyshev series for mathematical functions”, in National Physical Laboratory Mathematical Tables, vol. 5, London: Her Majesty’s Stationery Office, 1962.
Examples
>>> import numpy as np >>> np.i0(0.) array(1.0) >>> np.i0([0, 1, 2, 3]) array([1. , 1.26606588, 2.2795853 , 4.88079259])
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4