Copyright © 2002-2024 Akinori MUSHA <knu@iDaemons.org>
Documentation by Akinori MUSHA and Gavin Sinclair.
All rights reserved. You can redistribute and/or modify it under the same terms as Ruby.
The Set class implements a collection of unordered values with no duplicates. It is a hybrid of Arrayâs intuitive inter-operation facilities and Hashâs fast lookup.
Set is easy to use with Enumerable
objects (implementing âeach`). Most of the initializer methods and binary operators accept generic Enumerable
objects besides sets and arrays. An Enumerable
object can be converted to Set using the `to_set` method.
Set uses a data structure similar to Hash
for storage, except that it only has keys and no values.
Equality of elements is determined according to Object#eql?
and Object#hash
. Use Set#compare_by_identity
to make a set compare its elements by their identity.
Set assumes that the identity of each element does not change while it is stored. Modifying an element of a set will render the set to an unreliable state.
When a string is to be stored, a frozen copy of the string is stored instead unless the original string is already frozen.
The comparison operators <
, >
, <=
, and >=
are implemented as shorthand for the {proper_,}{subset?,superset?} methods. The <=>
operator reflects this order, or returns nil
for sets that both have distinct elements ({x, y}
vs. {x, z}
for example).
s1 = Set[1, 2] s2 = [1, 2].to_set s1 == s2 s1.add("foo") s1.merge([2, 6]) s1.subset?(s2) s2.subset?(s1)
Akinori MUSHA <knu@iDaemons.org> (current maintainer)
First, what's elsewhere. \Class \Set:
Inherits from class Object.
Includes module Enumerable, which provides dozens of additional methods.
In particular, class Set does not have many methods of its own for fetching or for iterating. Instead, it relies on those in Enumerable.
Here, class Set provides methods that are useful for:
::[]
: Returns a new set containing the given objects.
::new
: Returns a new set containing either the given objects (if no block given) or the return values from the called block (if a block given).
|
(aliased as union
and +
): Returns a new set containing all elements from self
and all elements from a given enumerable (no duplicates).
&
(aliased as intersection
): Returns a new set containing all elements common to self
and a given enumerable.
-
(aliased as difference
): Returns a copy of self
with all elements in a given enumerable removed.
^
: Returns a new set containing all elements from self
and a given enumerable except those common to both.
<=>
: Returns -1, 0, or 1 as self
is less than, equal to, or greater than a given object.
==
: Returns whether self
and a given enumerable are equal, as determined by Object#eql?
.
compare_by_identity?
: Returns whether the set considers only identity when comparing elements.
empty?
: Returns whether the set has no elements.
include?
(aliased as member?
and ===
): Returns whether a given object is an element in the set.
subset?
(aliased as <=
): Returns whether a given object is a subset of the set.
proper_subset?
(aliased as <
): Returns whether a given enumerable is a proper subset of the set.
superset?
(aliased as >=
): Returns whether a given enumerable is a superset of the set.
proper_superset?
(aliased as >
): Returns whether a given enumerable is a proper superset of the set.
disjoint?
: Returns true
if the set and a given enumerable have no common elements, false
otherwise.
intersect?
: Returns true
if the set and a given enumerable: have any common elements, false
otherwise.
compare_by_identity?
: Returns whether the set considers only identity when comparing elements.
add
(aliased as <<
): Adds a given object to the set; returns self
.
add?
: If the given object is not an element in the set, adds it and returns self
; otherwise, returns nil
.
merge
: Merges the elements of each given enumerable object to the set; returns self
.
replace
: Replaces the contents of the set with the contents of a given enumerable.
clear
: Removes all elements in the set; returns self
.
delete
: Removes a given object from the set; returns self
.
delete?
: If the given object is an element in the set, removes it and returns self
; otherwise, returns nil
.
subtract
: Removes each given object from the set; returns self
.
delete_if
- Removes elements specified by a given block.
select!
(aliased as filter!
): Removes elements not specified by a given block.
keep_if
: Removes elements not specified by a given block.
reject!
Removes elements specified by a given block.
classify
: Returns a hash that classifies the elements, as determined by the given block.
collect!
(aliased as map!
): Replaces each element with a block return-value.
divide
: Returns a hash that classifies the elements, as determined by the given block; differs from classify
in that the block may accept either one or two arguments.
flatten
: Returns a new set that is a recursive flattening of self
.
flatten!
: Replaces each nested set in self
with the elements from that set.
inspect
(aliased as to_s
): Returns a string displaying the elements.
join
: Returns a string containing all elements, converted to strings as needed, and joined by the given record separator.
to_a
: Returns an array containing all set elements.
to_set
: Returns self
if given no arguments and no block; with a block given, returns a new set consisting of block return values.
each
: Calls the block with each successive element; returns self
.
reset
: Resets the internal state; useful if an object has been modified while an element in the set.
static VALUE set_s_create(int argc, VALUE *argv, VALUE klass) { VALUE set = set_alloc_with_size(klass, argc); set_table *table = RSET_TABLE(set); int i; for (i=0; i < argc; i++) { set_table_insert_wb(table, set, argv[i], NULL); } return set; }
Returns a new Set object populated with the given objects, See Set::new
.
def self.json_create(object) new object['a'] end
See as_json
.
static VALUE set_i_initialize(int argc, VALUE *argv, VALUE set) { if (RBASIC(set)->flags & RSET_INITIALIZED) { rb_raise(rb_eRuntimeError, "cannot reinitialize set"); } RBASIC(set)->flags |= RSET_INITIALIZED; VALUE other; rb_check_arity(argc, 0, 1); if (argc > 0 && (other = argv[0]) != Qnil) { if (RB_TYPE_P(other, T_ARRAY)) { long i; int block_given = rb_block_given_p(); set_table *into = RSET_TABLE(set); for (i=0; i<RARRAY_LEN(other); i++) { VALUE key = RARRAY_AREF(other, i); if (block_given) key = rb_yield(key); set_table_insert_wb(into, set, key, NULL); } } else { ID id_size = rb_intern("size"); if (rb_obj_is_kind_of(other, rb_mEnumerable) && rb_respond_to(other, id_size)) { VALUE size = rb_funcall(other, id_size, 0); if (RB_TYPE_P(size, T_FLOAT) && RFLOAT_VALUE(size) == INFINITY) { rb_raise(rb_eArgError, "cannot initialize Set from an object with infinite size"); } } rb_block_call(other, enum_method_id(other), 0, 0, rb_block_given_p() ? set_initialize_with_block : set_initialize_without_block, set); } } return set; }
Creates a new set containing the elements of the given enumerable object.
If a block is given, the elements of enum are preprocessed by the given block.
Set.new([1, 2]) Set.new([1, 2, 1]) Set.new([1, 'c', :s]) Set.new(1..5) Set.new([1, 2, 3]) { |x| x * x }Public Instance Methods Source
static VALUE set_i_intersection(VALUE set, VALUE other) { VALUE new_set = set_s_alloc(rb_obj_class(set)); set_table *stable = RSET_TABLE(set); set_table *ntable = RSET_TABLE(new_set); if (rb_obj_is_kind_of(other, rb_cSet)) { set_table *otable = RSET_TABLE(other); if (set_table_size(stable) >= set_table_size(otable)) { /* Swap so we iterate over the smaller set */ otable = stable; set = other; } struct set_intersection_data data = { .set = new_set, .into = ntable, .other = otable }; set_iter(set, set_intersection_i, (st_data_t)&data); } else { struct set_intersection_data data = { .set = new_set, .into = ntable, .other = stable }; rb_block_call(other, enum_method_id(other), 0, 0, set_intersection_block, (VALUE)&data); } return new_set; }
Returns a new set containing elements common to the set and the given enumerable object.
Set[1, 3, 5] & Set[3, 2, 1] Set['a', 'b', 'z'] & ['a', 'b', 'c']Source
static VALUE set_i_difference(VALUE set, VALUE other) { return set_i_subtract(rb_obj_dup(set), other); }
Returns a new set built by duplicating the set, removing every element that appears in the given enumerable object.
Set[1, 3, 5] - Set[1, 5] Set['a', 'b', 'z'] - ['a', 'c']Source
static VALUE set_i_compare(VALUE set, VALUE other) { if (rb_obj_is_kind_of(other, rb_cSet)) { size_t set_size = RSET_SIZE(set); size_t other_size = RSET_SIZE(other); if (set_size < other_size) { if (set_le(set, other) == Qtrue) { return INT2NUM(-1); } } else if (set_size > other_size) { if (set_le(other, set) == Qtrue) { return INT2NUM(1); } } else if (set_le(set, other) == Qtrue) { return INT2NUM(0); } } return Qnil; }
Returns 0 if the set are equal, -1 / 1 if the set is a proper subset / superset of the given set, or or nil if they both have unique elements.
Sourcestatic VALUE set_i_eq(VALUE set, VALUE other) { if (!rb_obj_is_kind_of(other, rb_cSet)) return Qfalse; if (set == other) return Qtrue; set_table *stable = RSET_TABLE(set); set_table *otable = RSET_TABLE(other); size_t ssize = set_table_size(stable); size_t osize = set_table_size(otable); if (ssize != osize) return Qfalse; if (ssize == 0 && osize == 0) return Qtrue; if (stable->type != otable->type) return Qfalse; struct set_equal_data data; data.set = other; return rb_exec_recursive_paired(set_recursive_eql, set, other, (VALUE)&data); }
Returns true if two sets are equal.
Sourcestatic VALUE set_i_xor(VALUE set, VALUE other) { VALUE new_set; if (rb_obj_is_kind_of(other, rb_cSet)) { new_set = other; } else { new_set = set_s_alloc(rb_obj_class(set)); set_merge_enum_into(new_set, other); } set_iter(set, set_xor_i, (st_data_t)new_set); return new_set; }
Returns a new set containing elements exclusive between the set and the given enumerable object. (set ^ enum)
is equivalent to ((set | enum) - (set & enum))
.
Set[1, 2] ^ Set[2, 3] Set[1, 'b', 'c'] ^ ['b', 'd']Source
static VALUE set_i_union(VALUE set, VALUE other) { set = rb_obj_dup(set); set_merge_enum_into(set, other); return set; }
Returns a new set built by merging the set and the elements of the given enumerable object.
Set[1, 2, 3] | Set[2, 4, 5] Set[1, 5, 'z'] | (1..6)Source
static VALUE set_i_add(VALUE set, VALUE item) { rb_check_frozen(set); if (set_iterating_p(set)) { if (!set_table_lookup(RSET_TABLE(set), (st_data_t)item)) { no_new_item(); } } else { set_insert_wb(set, item, NULL); } return set; }
Adds the given object to the set and returns self. Use âmerge` to add many elements at once.
Set[1, 2].add(3) Set[1, 2].add([3, 4]) Set[1, 2].add(2)Source
static VALUE set_i_add_p(VALUE set, VALUE item) { rb_check_frozen(set); if (set_iterating_p(set)) { if (!set_table_lookup(RSET_TABLE(set), (st_data_t)item)) { no_new_item(); } return Qnil; } else { return set_insert_wb(set, item, NULL) ? Qnil : set; } }
Adds the given object to the set and returns self. If the object is already in the set, returns nil.
Set[1, 2].add?(3) Set[1, 2].add?([3, 4]) Set[1, 2].add?(2)Source
def as_json(*) { JSON.create_id => self.class.name, 'a' => to_a, } end
Methods Set#as_json
and Set.json_create
may be used to serialize and deserialize a Set object; see Marshal
.
Method Set#as_json
serializes self
, returning a 2-element hash representing self
:
require 'json/add/set' x = Set.new(%w/foo bar baz/).as_json
Method JSON.create
deserializes such a hash, returning a Set object:
Set.json_create(x)Source
static VALUE set_i_classify(VALUE set) { RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size); VALUE args[2]; args[0] = rb_hash_new(); args[1] = rb_obj_class(set); set_iter(set, set_classify_i, (st_data_t)args); return args[0]; }
Classifies the set by the return value of the given block and returns a hash of {value => set of elements} pairs. The block is called once for each element of the set, passing the element as parameter.
files = Set.new(Dir.glob("*.rb")) hash = files.classify { |f| File.mtime(f).year } hash
Returns an enumerator if no block is given.
Sourcestatic VALUE set_i_clear(VALUE set) { rb_check_frozen(set); if (RSET_SIZE(set) == 0) return set; if (set_iterating_p(set)) { set_iter(set, set_clear_i, 0); } else { set_table_clear(RSET_TABLE(set)); set_compact_after_delete(set); } return set; }
Removes all elements and returns self.
set = Set[1, 'c', :s] set.clear setSource
static VALUE set_i_collect(VALUE set) { RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size); rb_check_frozen(set); VALUE new_set = set_s_alloc(rb_obj_class(set)); set_iter(set, set_collect_i, (st_data_t)new_set); set_i_initialize_copy(set, new_set); return set; }
Replaces the elements with ones returned by collect
. Returns an enumerator if no block is given.
static VALUE set_i_compare_by_identity(VALUE set) { if (RSET_COMPARE_BY_IDENTITY(set)) return set; if (set_iterating_p(set)) { rb_raise(rb_eRuntimeError, "compare_by_identity during iteration"); } return set_reset_table_with_type(set, &identhash); }
Makes the set compare its elements by their identity and returns self.
Sourcestatic VALUE set_i_compare_by_identity_p(VALUE set) { return RBOOL(RSET_COMPARE_BY_IDENTITY(set)); }
Returns true if the set will compare its elements by their identity. Also see Set#compare_by_identity
.
static VALUE set_i_delete(VALUE set, VALUE item) { rb_check_frozen(set); if (set_table_delete(RSET_TABLE(set), (st_data_t *)&item)) { set_compact_after_delete(set); } return set; }
Deletes the given object from the set and returns self. Use subtract to delete many items at once.
Sourcestatic VALUE set_i_delete_p(VALUE set, VALUE item) { rb_check_frozen(set); if (set_table_delete(RSET_TABLE(set), (st_data_t *)&item)) { set_compact_after_delete(set); return set; } return Qnil; }
Deletes the given object from the set and returns self. If the object is not in the set, returns nil.
Sourcestatic VALUE set_i_delete_if(VALUE set) { RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size); rb_check_frozen(set); set_iter(set, set_delete_if_i, 0); set_compact_after_delete(set); return set; }
Deletes every element of the set for which block evaluates to true, and returns self. Returns an enumerator if no block is given.
Sourcestatic VALUE set_i_disjoint(VALUE set, VALUE other) { return RBOOL(!RTEST(set_i_intersect(set, other))); }
Returns true if the set and the given enumerable have no element in common. This method is the opposite of intersect?
.
Set[1, 2, 3].disjoint? Set[3, 4] Set[1, 2, 3].disjoint? Set[4, 5] Set[1, 2, 3].disjoint? [3, 4] Set[1, 2, 3].disjoint? 4..5Source
static VALUE set_i_divide(VALUE set) { RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size); if (rb_block_arity() == 2) { return set_divide_arity2(set); } VALUE values = rb_hash_values(set_i_classify(set)); set = set_alloc_with_size(rb_cSet, RARRAY_LEN(values)); set_merge_enum_into(set, values); return set; }
Divides the set into a set of subsets according to the commonality defined by the given block.
If the arity of the block is 2, elements o1 and o2 are in common if both block.call(o1, o2) and block.call(o2, o1) are true. Otherwise, elements o1 and o2 are in common if block.call(o1) == block.call(o2).
numbers = Set[1, 3, 4, 6, 9, 10, 11] set = numbers.divide { |i,j| (i - j).abs == 1 } set
Returns an enumerator if no block is given.
Sourcestatic VALUE set_i_each(VALUE set) { RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size); set_iter(set, set_each_i, 0); return set; }
Calls the given block once for each element in the set, passing the element as parameter. Returns an enumerator if no block is given.
Sourcestatic VALUE set_i_empty(VALUE set) { return RBOOL(RSET_EMPTY(set)); }
Returns true if the set contains no elements.
Sourcedef encode_with(coder) hash = {} each do |m| hash[m] = true end coder["hash"] = hash coder endSource
static VALUE set_i_flatten(VALUE set) { VALUE new_set = set_s_alloc(rb_obj_class(set)); set_flatten_merge(new_set, set, rb_hash_new()); return new_set; }
Returns a new set that is a copy of the set, flattening each containing set recursively.
Sourcestatic VALUE set_i_flatten_bang(VALUE set) { bool contains_set = false; set_iter(set, set_contains_set_i, (st_data_t)&contains_set); if (!contains_set) return Qnil; rb_check_frozen(set); return set_i_replace(set, set_i_flatten(set)); }
Equivalent to Set#flatten
, but replaces the receiver with the result in place. Returns nil if no modifications were made.
static VALUE set_i_hash(VALUE set) { st_index_t size = RSET_SIZE(set); st_index_t hval = rb_st_hash_start(size); hval = rb_hash_uint(hval, (st_index_t)set_i_hash); if (size) { set_iter(set, set_hash_i, (VALUE)&hval); } hval = rb_st_hash_end(hval); return ST2FIX(hval); }
Returns hash code for set.
Sourcestatic VALUE set_i_include(VALUE set, VALUE item) { return RBOOL(RSET_IS_MEMBER(set, item)); }
Returns true if the set contains the given object:
Set[1, 2, 3].include? 2 Set[1, 2, 3].include? 4
Note that include?
and member?
do not test member equality using ==
as do other Enumerables.
This is aliased to ===
, so it is usable in case
expressions:
case :apple when Set[:potato, :carrot] "vegetable" when Set[:apple, :banana] "fruit" end
See also Enumerable#include?
def init_with(coder) replace(coder["hash"].keys) endSource
static VALUE set_i_inspect(VALUE set) { return rb_exec_recursive(set_inspect, set, 0); }
Returns a new string containing the set entries:
s = Set.new s.inspect s.add(1) s.inspect s.add(2) s.inspect
Related: see Methods for Converting.
Sourcestatic VALUE set_i_intersect(VALUE set, VALUE other) { if (rb_obj_is_kind_of(other, rb_cSet)) { size_t set_size = RSET_SIZE(set); size_t other_size = RSET_SIZE(other); VALUE args[2]; args[1] = Qfalse; VALUE iter_arg; if (set_size < other_size) { iter_arg = set; args[0] = (VALUE)RSET_TABLE(other); } else { iter_arg = other; args[0] = (VALUE)RSET_TABLE(set); } set_iter(iter_arg, set_intersect_i, (st_data_t)args); return args[1]; } else if (rb_obj_is_kind_of(other, rb_mEnumerable)) { return rb_funcall(other, id_any_p, 1, set); } else { rb_raise(rb_eArgError, "value must be enumerable"); } }
Returns true if the set and the given enumerable have at least one element in common.
Set[1, 2, 3].intersect? Set[4, 5] Set[1, 2, 3].intersect? Set[3, 4] Set[1, 2, 3].intersect? 4..5 Set[1, 2, 3].intersect? [3, 4]Source
static VALUE set_i_join(int argc, VALUE *argv, VALUE set) { rb_check_arity(argc, 0, 1); return rb_ary_join(set_i_to_a(set), argc == 0 ? Qnil : argv[0]); }
Returns a string created by converting each element of the set to a string.
Sourcestatic VALUE set_i_keep_if(VALUE set) { RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size); rb_check_frozen(set); set_iter(set, set_keep_if_i, (st_data_t)RSET_TABLE(set)); return set; }
Deletes every element of the set for which block evaluates to false, and returns self. Returns an enumerator if no block is given.
Sourcestatic VALUE set_i_merge(int argc, VALUE *argv, VALUE set) { if (rb_keyword_given_p()) { rb_raise(rb_eArgError, "no keywords accepted"); } if (set_iterating_p(set)) { rb_raise(rb_eRuntimeError, "cannot add to set during iteration"); } rb_check_frozen(set); int i; for (i=0; i < argc; i++) { set_merge_enum_into(set, argv[i]); } return set; }
Merges the elements of the given enumerable objects to the set and returns self.
Sourcestatic VALUE set_i_proper_subset(VALUE set, VALUE other) { check_set(other); if (RSET_SIZE(set) >= RSET_SIZE(other)) return Qfalse; return set_le(set, other); }
Returns true if the set is a proper subset of the given set.
Sourcestatic VALUE set_i_proper_superset(VALUE set, VALUE other) { check_set(other); if (RSET_SIZE(set) <= RSET_SIZE(other)) return Qfalse; return set_le(other, set); }
Returns true if the set is a proper superset of the given set.
Sourcestatic VALUE set_i_reject(VALUE set) { RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size); rb_check_frozen(set); set_table *table = RSET_TABLE(set); size_t n = set_table_size(table); set_iter(set, set_delete_if_i, 0); if (n == set_table_size(table)) return Qnil; set_compact_after_delete(set); return set; }
Equivalent to Set#delete_if
, but returns nil if no changes were made. Returns an enumerator if no block is given.
static VALUE set_i_replace(VALUE set, VALUE other) { rb_check_frozen(set); if (rb_obj_is_kind_of(other, rb_cSet)) { set_i_initialize_copy(set, other); } else { if (set_iterating_p(set)) { rb_raise(rb_eRuntimeError, "cannot replace set during iteration"); } // make sure enum is enumerable before calling clear enum_method_id(other); set_table_clear(RSET_TABLE(set)); set_merge_enum_into(set, other); } return set; }
Replaces the contents of the set with the contents of the given enumerable object and returns self.
set = Set[1, 'c', :s] set.replace([1, 2]) setSource
static VALUE set_i_reset(VALUE set) { if (set_iterating_p(set)) { rb_raise(rb_eRuntimeError, "reset during iteration"); } return set_reset_table_with_type(set, RSET_TABLE(set)->type); }
Resets the internal state after modification to existing elements and returns self. Elements will be reindexed and deduplicated.
Sourcestatic VALUE set_i_select(VALUE set) { RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size); rb_check_frozen(set); set_table *table = RSET_TABLE(set); size_t n = set_table_size(table); set_iter(set, set_keep_if_i, (st_data_t)table); return (n == set_table_size(table)) ? Qnil : set; }
Equivalent to Set#keep_if
, but returns nil if no changes were made. Returns an enumerator if no block is given.
static VALUE set_i_size(VALUE set) { return RSET_SIZE_NUM(set); }
Returns the number of elements.
Sourcestatic VALUE set_i_subset(VALUE set, VALUE other) { check_set(other); if (RSET_SIZE(set) > RSET_SIZE(other)) return Qfalse; return set_le(set, other); }
Returns true if the set is a subset of the given set.
Sourcestatic VALUE set_i_subtract(VALUE set, VALUE other) { rb_check_frozen(set); set_remove_enum_from(set, other); return set; }
Deletes every element that appears in the given enumerable object and returns self.
Sourcestatic VALUE set_i_superset(VALUE set, VALUE other) { check_set(other); if (RSET_SIZE(set) < RSET_SIZE(other)) return Qfalse; return set_le(other, set); }
Returns true if the set is a superset of the given set.
Sourcestatic VALUE set_i_to_a(VALUE set) { st_index_t size = RSET_SIZE(set); VALUE ary = rb_ary_new_capa(size); if (size == 0) return ary; if (ST_DATA_COMPATIBLE_P(VALUE)) { RARRAY_PTR_USE(ary, ptr, { size = set_keys(RSET_TABLE(set), ptr, size); }); rb_gc_writebarrier_remember(ary); rb_ary_set_len(ary, size); } else { set_iter(set, set_to_a_i, (st_data_t)ary); } return ary; }
Returns an array containing all elements in the set.
Set[1, 2].to_a Set[1, 'c', :s].to_aSource
def to_json(*args) as_json.to_json(*args) end
Returns a JSON
string representing self
:
require 'json/add/set' puts Set.new(%w/foo bar baz/).to_json
Output:
{"json_class":"Set","a":["foo","bar","baz"]}Source
static VALUE set_i_to_set(int argc, VALUE *argv, VALUE set) { VALUE klass; if (argc == 0) { klass = rb_cSet; argv = &set; argc = 1; } else { rb_warn_deprecated("passing arguments to Set#to_set", NULL); klass = argv[0]; argv[0] = set; } if (klass == rb_cSet && rb_obj_is_instance_of(set, rb_cSet) && argc == 1 && !rb_block_given_p()) { return set; } return rb_funcall_passing_block(klass, id_new, argc, argv); }
Returns self if receiver is an instance of Set
and no arguments or block are given. Otherwise, converts the set to another with klass.new(self, *args, &block)
.
In subclasses, returns âklass.new(self, *args, &block)` unless overridden.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4