A Hash object maps each of its unique keys to a specific value.
A hash has certain similarities to an Array
, but:
An array index is always an integer.
A hash key can be (almost) any object.
The original syntax for a hash entry uses the âhash rocket,â =>
:
h = {:foo => 0, :bar => 1, :baz => 2} h
Alternatively, but only for a key thatâs a symbol, you can use a newer JSON-style syntax, where each bareword becomes a symbol:
h = {foo: 0, bar: 1, baz: 2} h
You can also use a string in place of a bareword:
h = {'foo': 0, 'bar': 1, 'baz': 2} h
And you can mix the styles:
h = {foo: 0, :bar => 1, 'baz': 2} h
But itâs an error to try the JSON-style syntax for a key thatâs not a bareword or a string:
# Raises SyntaxError (syntax error, unexpected ':', expecting =>): h = {0: 'zero'}
The value can be omitted, meaning that value will be fetched from the context by the name of the key:
x = 0 y = 100 h = {x:, y:} hCommon Uses¶ ↑
You can use a hash to give names to objects:
person = {name: 'Matz', language: 'Ruby'} person
You can use a hash to give names to method arguments:
def some_method(hash) p hash end some_method({foo: 0, bar: 1, baz: 2})
Note: when the last argument in a method call is a hash, the curly braces may be omitted:
some_method(foo: 0, bar: 1, baz: 2)
You can use a hash to initialize an object:
class Dev attr_accessor :name, :language def initialize(hash) self.name = hash[:name] self.language = hash[:language] end end matz = Dev.new(name: 'Matz', language: 'Ruby') matzCreating a Hash¶ ↑
You can create a Hash object explicitly with:
A hash literal.
You can convert certain objects to hashes with:
Method Kernel#Hash
.
You can create a hash by calling method Hash.new
:
h = Hash.new h h.class
You can create a hash by calling method Hash.[]
:
h = Hash[] h h = Hash[foo: 0, bar: 1, baz: 2] h
You can create a hash by using its literal form (curly braces):
h = {} h h = {foo: 0, bar: 1, baz: 2} hHash Value Basics¶ ↑
The simplest way to retrieve a hash value (instance method []
):
h = {foo: 0, bar: 1, baz: 2} h[:foo]
The simplest way to create or update a hash value (instance method []=
):
h = {foo: 0, bar: 1, baz: 2} h[:bat] = 3 h h[:foo] = 4 h
The simplest way to delete a hash entry (instance method delete
):
h = {foo: 0, bar: 1, baz: 2} h.delete(:bar) hEntry Order¶ ↑
A Hash object presents its entries in the order of their creation. This is seen in:
Iterative methods such as each
, each_key
, each_pair
, each_value
.
Other order-sensitive methods such as shift
, keys
, values
.
The string returned by method inspect
.
A new hash has its initial ordering per the given entries:
h = Hash[foo: 0, bar: 1] h
New entries are added at the end:
h[:baz] = 2 h
Updating a value does not affect the order:
h[:baz] = 3 h
But re-creating a deleted entry can affect the order:
h.delete(:foo) h[:foo] = 5 h
Hash
Keys¶ ↑ Hash
Key Equivalence¶ ↑
Two objects are treated as the same hash key when their hash
value is identical and the two objects are eql?
to each other.
Hash
Key¶ ↑
Modifying a Hash
key while it is in use damages the hashâs index.
This Hash
has keys that are Arrays:
a0 = [ :foo, :bar ] a1 = [ :baz, :bat ] h = {a0 => 0, a1 => 1} h.include?(a0) h[a0] a0.hash
Modifying array element a0[0]
changes its hash value:
a0[0] = :bam a0.hash
And damages the Hash
index:
h.include?(a0) h[a0]
You can repair the hash index using method rehash
:
h.rehash h.include?(a0) h[a0]
A String
key is always safe. Thatâs because an unfrozen String
passed as a key will be replaced by a duplicated and frozen String:
s = 'foo' s.frozen? h = {s => 0} first_key = h.keys.first first_key.frozen?User-Defined
Hash
Keys¶ ↑
To be usable as a Hash
key, objects must implement the methods hash
and eql?
. Note: this requirement does not apply if the Hash
uses compare_by_identity
since comparison will then rely on the keysâ object id instead of hash
and eql?
.
Object
defines basic implementation for hash
and eq?
that makes each object a distinct key. Typically, user-defined classes will want to override these methods to provide meaningful behavior, or for example inherit Struct
that has useful definitions for these.
A typical implementation of hash
is based on the objectâs data while eql?
is usually aliased to the overridden ==
method:
class Book attr_reader :author, :title def initialize(author, title) @author = author @title = title end def ==(other) self.class === other && other.author == @author && other.title == @title end alias eql? == def hash [self.class, @author, @title].hash end end book1 = Book.new 'matz', 'Ruby in a Nutshell' book2 = Book.new 'matz', 'Ruby in a Nutshell' reviews = {} reviews[book1] = 'Great reference!' reviews[book2] = 'Nice and compact!' reviews.lengthKey Not Found?¶ ↑
When a method tries to retrieve and return the value for a key and that key is found, the returned value is the value associated with the key.
But what if the key is not found? In that case, certain methods will return a default value while other will raise a KeyError.
Nil Return Value¶ ↑If you want nil
returned for a not-found key, you can call:
[](key)
(usually written as #[key]
.
You can override these behaviors for []
, dig
, and values_at
(but not assoc
); see Hash Default.
If you want KeyError
raised for a not-found key, you can call:
For certain methods ([]
, dig
, and values_at
), the return value for a not-found key is determined by two hash properties:
default value: returned by method default
.
default proc: returned by method default_proc
.
In the simple case, both values are nil
, and the methods return nil
for a not-found key; see Nil Return Value above.
Note that this entire section (âHash Defaultâ):
Does not apply to methods assoc
, fetch
, or fetch_values
, which are not affected by the default value or default proc.
You can define an any-key default for a hash; that is, a value that will be returned for any not-found key:
The value of default_proc
must be nil
.
The value of default
(which may be any object, including nil
) will be returned for a not-found key.
You can set the default value when the hash is created with Hash.new
and option default_value
, or later with method default=
.
Note: although the value of default
may be any object, it may not be a good idea to use a mutable object.
You can define a per-key default for a hash; that is, a Proc
that will return a value based on the key itself.
You can set the default proc when the hash is created with Hash.new
and a block, or later with method default_proc=
.
Note that the proc can modify self
, but modifying self
in this way is not thread-safe; multiple threads can concurrently call into the default proc for the same key.
For two methods, you can specify a default value for a not-found key that has effect only for a single method call (and not for any subsequent calls):
For method fetch
, you can specify an any-key default:
For either method fetch
or method fetch_values
, you can specify a per-key default via a block.
First, whatâs elsewhere. Class Hash
:
Inherits from class Object.
Includes module Enumerable, which provides dozens of additional methods.
Here, class Hash
provides methods that are useful for:
Class Hash
also includes methods from module Enumerable
.
Hash
¶ ↑
::[]
: Returns a new hash populated with given objects.
::new
: Returns a new empty hash.
::try_convert
: Returns a new hash created from a given object.
Hash
State¶ ↑
compare_by_identity
: Sets self
to consider only identity in comparing keys.
default=
: Sets the default to a given value.
default_proc=
: Sets the default proc to a given proc.
rehash
: Rebuilds the hash table by recomputing the hash index for each key.
any?
: Returns whether any element satisfies a given criterion.
compare_by_identity?
: Returns whether the hash considers only identity when comparing keys.
default
: Returns the default value, or the default value for a given key.
default_proc
: Returns the default proc.
empty?
: Returns whether there are no entries.
eql?
: Returns whether a given object is equal to self
.
hash
: Returns the integer hash code.
has_value?
(aliased as value?
): Returns whether a given object is a value in self
.
include?
(aliased as has_key?
, member?
, key?
): Returns whether a given object is a key in self
.
<
: Returns whether self
is a proper subset of a given object.
<=
: Returns whether self
is a subset of a given object.
==
: Returns whether a given object is equal to self
.
>
: Returns whether self
is a proper superset of a given object
>=
: Returns whether self
is a superset of a given object.
[]
: Returns the value associated with a given key.
assoc
: Returns a 2-element array containing a given key and its value.
dig
: Returns the object in nested objects that is specified by a given key and additional arguments.
fetch
: Returns the value for a given key.
fetch_values
: Returns array containing the values associated with given keys.
key
: Returns the key for the first-found entry with a given value.
keys
: Returns an array containing all keys in self
.
rassoc
: Returns a 2-element array consisting of the key and value of the first-found entry having a given value.
values
: Returns an array containing all values in self
/
values_at
: Returns an array containing values for given keys.
[]=
(aliased as store
): Associates a given key with a given value.
merge
: Returns the hash formed by merging each given hash into a copy of self
.
update
(aliased as merge!
): Merges each given hash into self
.
replace
(aliased as initialize_copy
): Replaces the entire contents of self
with the contents of a given hash.
These methods remove entries from self
:
clear
: Removes all entries from self
.
compact!
: Removes all nil
-valued entries from self
.
delete
: Removes the entry for a given key.
delete_if
: Removes entries selected by a given block.
select!
(aliased as filter!
): Keep only those entries selected by a given block.
keep_if
: Keep only those entries selected by a given block.
reject!
: Removes entries selected by a given block.
shift
: Removes and returns the first entry.
These methods return a copy of self
with some entries removed:
compact
: Returns a copy of self
with all nil
-valued entries removed.
except
: Returns a copy of self
with entries removed for specified keys.
select
(aliased as filter
): Returns a copy of self
with only those entries selected by a given block.
reject
: Returns a copy of self
with entries removed as specified by a given block.
slice
: Returns a hash containing the entries for given keys.
each_pair
(aliased as each
): Calls a given block with each key-value pair.
each_key
: Calls a given block with each key.
each_value
: Calls a given block with each value.
flatten
: Returns an array that is a 1-dimensional flattening of self
.
inspect
(aliased as to_s
): Returns a new String
containing the hash entries.
to_a
: Returns a new array of 2-element arrays; each nested array contains a key-value pair from self
.
to_h
: Returns self
if a Hash
; if a subclass of Hash
, returns a Hash
containing the entries from self
.
to_hash
: Returns self
.
to_proc
: Returns a proc that maps a given key to its value.
flatten!: Returns self
, flattened.
invert
: Returns a hash with the each key-value pair inverted.
transform_keys
: Returns a copy of self
with modified keys.
transform_keys!
: Modifies keys in self
transform_values
: Returns a copy of self
with modified values.
transform_values!
: Modifies values in self
.
static VALUE rb_hash_s_create(int argc, VALUE *argv, VALUE klass) { VALUE hash, tmp; if (argc == 1) { tmp = rb_hash_s_try_convert(Qnil, argv[0]); if (!NIL_P(tmp)) { if (!RHASH_EMPTY_P(tmp) && rb_hash_compare_by_id_p(tmp)) { /* hash_copy for non-empty hash will copy compare_by_identity flag, but we don't want it copied. Work around by converting hash to flattened array and using that. */ tmp = rb_hash_to_a(tmp); } else { hash = hash_alloc(klass); if (!RHASH_EMPTY_P(tmp)) hash_copy(hash, tmp); return hash; } } else { tmp = rb_check_array_type(argv[0]); } if (!NIL_P(tmp)) { long i; hash = hash_alloc(klass); for (i = 0; i < RARRAY_LEN(tmp); ++i) { VALUE e = RARRAY_AREF(tmp, i); VALUE v = rb_check_array_type(e); VALUE key, val = Qnil; if (NIL_P(v)) { rb_raise(rb_eArgError, "wrong element type %s at %ld (expected array)", rb_builtin_class_name(e), i); } switch (RARRAY_LEN(v)) { default: rb_raise(rb_eArgError, "invalid number of elements (%ld for 1..2)", RARRAY_LEN(v)); case 2: val = RARRAY_AREF(v, 1); case 1: key = RARRAY_AREF(v, 0); rb_hash_aset(hash, key, val); } } return hash; } } if (argc % 2 != 0) { rb_raise(rb_eArgError, "odd number of arguments for Hash"); } hash = hash_alloc(klass); rb_hash_bulk_insert(argc, argv, hash); hash_verify(hash); return hash; }
Returns a new Hash object populated with the given objects, if any. See Hash::new
.
With no argument given, returns a new empty hash.
With a single argument other_hash
given that is a hash, returns a new hash initialized with the entries from that hash (but not with its default
or default_proc
):
h = {foo: 0, bar: 1, baz: 2} Hash[h]
With a single argument 2_element_arrays
given that is an array of 2-element arrays, returns a new hash wherein each given 2-element array forms a key-value entry:
Hash[ [ [:foo, 0], [:bar, 1] ] ]
With an even number of arguments objects
given, returns a new hash wherein each successive pair of arguments is a key-value entry:
Hash[:foo, 0, :bar, 1]
Raises ArgumentError
if the argument list does not conform to any of the above.
See also Methods for Creating a Hash.
Sourcedef initialize(ifnone = (ifnone_unset = true), capacity: 0, &block) Primitive.rb_hash_init(capacity, ifnone_unset, ifnone, block) end
Returns a new empty Hash object.
Initializes the values of Hash#default
and Hash#default_proc
, which determine the behavior when a given key is not found; see Key Not Found?.
By default, a hash has nil
values for both default
and default_proc
:
h = Hash.new h.default h.default_proc
With argument default_value
given, sets the default
value for the hash:
h = Hash.new(false) h.default h.default_proc
With a block given, sets the default_proc
value:
h = Hash.new {|hash, key| "Hash #{hash}: Default value for #{key}" } h.default h.default_proc h[:nosuch]
Raises ArgumentError
if both default_value
and a block are given.
If optional keyword argument capacity
is given with a positive integer value n
, initializes the hash with enough capacity to accommodate n
entries without resizing.
See also Methods for Creating a Hash.
Sourcestatic VALUE rb_hash_s_ruby2_keywords_hash(VALUE dummy, VALUE hash) { Check_Type(hash, T_HASH); VALUE tmp = rb_hash_dup(hash); if (RHASH_EMPTY_P(hash) && rb_hash_compare_by_id_p(hash)) { rb_hash_compare_by_id(tmp); } RHASH(tmp)->basic.flags |= RHASH_PASS_AS_KEYWORDS; return tmp; }
Duplicates a given hash and adds a ruby2_keywords flag. This method is not for casual use; debugging, researching, and some truly necessary cases like deserialization of arguments.
h = {k: 1} h = Hash.ruby2_keywords_hash(h) def foo(k: 42) k end foo(*[h])Source
static VALUE rb_hash_s_ruby2_keywords_hash_p(VALUE dummy, VALUE hash) { Check_Type(hash, T_HASH); return RBOOL(RHASH(hash)->basic.flags & RHASH_PASS_AS_KEYWORDS); }
Checks if a given hash is flagged by Module#ruby2_keywords
(or Proc#ruby2_keywords
). This method is not for casual use; debugging, researching, and some truly necessary cases like serialization of arguments.
ruby2_keywords def foo(*args) Hash.ruby2_keywords_hash?(args.last) end foo(k: 1) foo({k: 1})Source
static VALUE rb_hash_s_try_convert(VALUE dummy, VALUE hash) { return rb_check_hash_type(hash); }
If object
is a hash, returns object
.
Otherwise if object
responds to :to_hash
, calls object.to_hash
; returns the result if it is a hash, or raises TypeError
if not.
Otherwise if object
does not respond to :to_hash
, returns nil
.
static VALUE rb_hash_lt(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) >= RHASH_SIZE(other)) return Qfalse; return hash_le(hash, other); }
Returns true
if the entries of self
are a proper subset of the entries of other_hash
, false
otherwise:
h = {foo: 0, bar: 1} h < {foo: 0, bar: 1, baz: 2} h < {baz: 2, bar: 1, foo: 0} h < h h < {bar: 1, foo: 0} h < {foo: 0, bar: 1, baz: 2} h < {foo: 0, bar: 1, baz: 2}
See Hash Inclusion.
Raises TypeError
if other_hash
is not a hash and cannot be converted to a hash.
Related: see Methods for Comparing.
Sourcestatic VALUE rb_hash_le(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) > RHASH_SIZE(other)) return Qfalse; return hash_le(hash, other); }
Returns true
if the entries of self
are a subset of the entries of other_hash
, false
otherwise:
h0 = {foo: 0, bar: 1} h1 = {foo: 0, bar: 1, baz: 2} h0 <= h0 h0 <= h1 h1 <= h0
See Hash Inclusion.
Raises TypeError
if other_hash
is not a hash and cannot be converted to a hash.
Related: see Methods for Comparing.
Sourcestatic VALUE rb_hash_equal(VALUE hash1, VALUE hash2) { return hash_equal(hash1, hash2, FALSE); }
Returns whether self
and object
are equal.
Returns true
if all of the following are true:
object
is a Hash
object (or can be converted to one).
self
and object
have the same keys (regardless of order).
For each key key
, self[key] == object[key]
.
Otherwise, returns false
.
Examples:
h = {foo: 0, bar: 1} h == {foo: 0, bar: 1} h == {bar: 1, foo: 0} h == 1 h == {} h == {foo: 0, bar: 1} h == {foo: 0, bar: 1}
Related: see Methods for Comparing.
Sourcestatic VALUE rb_hash_gt(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) <= RHASH_SIZE(other)) return Qfalse; return hash_le(other, hash); }
Returns true
if the entries of self
are a proper superset of the entries of other_hash
, false
otherwise:
h = {foo: 0, bar: 1, baz: 2} h > {foo: 0, bar: 1} h > {bar: 1, foo: 0} h > h h > {baz: 2, bar: 1, foo: 0} h > {foo: 0, bar: 1} h > {foo: 0, bar: 1}
See Hash Inclusion.
Raises TypeError
if other_hash
is not a hash and cannot be converted to a hash.
Related: see Methods for Comparing.
Sourcestatic VALUE rb_hash_ge(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) < RHASH_SIZE(other)) return Qfalse; return hash_le(other, hash); }
Returns true
if the entries of self
are a superset of the entries of other_hash
, false
otherwise:
h0 = {foo: 0, bar: 1, baz: 2} h1 = {foo: 0, bar: 1} h0 >= h1 h0 >= h0 h1 >= h0
See Hash Inclusion.
Raises TypeError
if other_hash
is not a hash and cannot be converted to a hash.
Related: see Methods for Comparing.
SourceVALUE rb_hash_aref(VALUE hash, VALUE key) { st_data_t val; if (hash_stlike_lookup(hash, key, &val)) { return (VALUE)val; } else { return rb_hash_default_value(hash, key); } }
Searches for a hash key equivalent to the given key
; see Hash Key Equivalence.
If the key is found, returns its value:
{foo: 0, bar: 1, baz: 2} h[:bar]
Otherwise, returns a default value (see Hash Default).
Related: []=
; see also Methods for Fetching.
VALUE rb_hash_aset(VALUE hash, VALUE key, VALUE val) { bool iter_p = hash_iterating_p(hash); rb_hash_modify(hash); if (!RHASH_STRING_KEY_P(hash, key)) { RHASH_UPDATE_ITER(hash, iter_p, key, hash_aset, val); } else { RHASH_UPDATE_ITER(hash, iter_p, key, hash_aset_str, val); } return val; }
Associates the given object
with the given key
; returns object
.
Searches for a hash key equivalent to the given key
; see Hash Key Equivalence.
If the key is found, replaces its value with the given object
; the ordering is not affected (see Entry Order):
h = {foo: 0, bar: 1} h[:foo] = 2 h[:foo]
If key
is not found, creates a new entry for the given key
and object
; the new entry is last in the order (see Entry Order):
h = {foo: 0, bar: 1} h[:baz] = 2 h[:baz] h
Related: []
; see also Methods for Assigning.
static VALUE rb_hash_any_p(int argc, VALUE *argv, VALUE hash) { VALUE args[2]; args[0] = Qfalse; rb_check_arity(argc, 0, 1); if (RHASH_EMPTY_P(hash)) return Qfalse; if (argc) { if (rb_block_given_p()) { rb_warn("given block not used"); } args[1] = argv[0]; rb_hash_foreach(hash, any_p_i_pattern, (VALUE)args); } else { if (!rb_block_given_p()) { /* yields pairs, never false */ return Qtrue; } if (rb_block_pair_yield_optimizable()) rb_hash_foreach(hash, any_p_i_fast, (VALUE)args); else rb_hash_foreach(hash, any_p_i, (VALUE)args); } return args[0]; }
Returns true
if any element satisfies a given criterion; false
otherwise.
If self
has no element, returns false
and argument or block are not used; otherwise behaves as below.
With no argument and no block, returns true
if self
is non-empty, false
otherwise.
With argument entry
and no block, returns true
if for any key key
self.assoc(key) == entry
, false
otherwise:
h = {foo: 0, bar: 1, baz: 2} h.assoc(:bar) h.any?([:bar, 1]) h.any?([:bar, 0])
With no argument and a block given, calls the block with each key-value pair; returns true
if the block returns a truthy value, false
otherwise:
h = {foo: 0, bar: 1, baz: 2} h.any? {|key, value| value < 3 } h.any? {|key, value| value > 3 }
With both argument entry
and a block given, issues a warning and ignores the block.
Related: Enumerable#any?
(which this method overrides); see also Methods for Fetching.
static VALUE rb_hash_assoc(VALUE hash, VALUE key) { VALUE args[2]; if (RHASH_EMPTY_P(hash)) return Qnil; if (RHASH_ST_TABLE_P(hash) && !RHASH_IDENTHASH_P(hash)) { VALUE value = Qundef; st_table assoctable = *RHASH_ST_TABLE(hash); assoctable.type = &(struct st_hash_type){ .compare = assoc_cmp, .hash = assoctable.type->hash, }; VALUE arg = (VALUE)&(struct assoc_arg){ .tbl = &assoctable, .key = (st_data_t)key, }; if (RB_OBJ_FROZEN(hash)) { value = assoc_lookup(arg); } else { hash_iter_lev_inc(hash); value = rb_ensure(assoc_lookup, arg, hash_foreach_ensure, hash); } hash_verify(hash); if (!UNDEF_P(value)) return rb_assoc_new(key, value); } args[0] = key; args[1] = Qnil; rb_hash_foreach(hash, assoc_i, (VALUE)args); return args[1]; }
If the given key
is found, returns its entry as a 2-element array containing that key and its value:
h = {foo: 0, bar: 1, baz: 2} h.assoc(:bar)
Returns nil
if the key is not found.
Related: see Methods for Fetching.
SourceVALUE rb_hash_clear(VALUE hash) { rb_hash_modify_check(hash); if (hash_iterating_p(hash)) { rb_hash_foreach(hash, clear_i, 0); } else if (RHASH_AR_TABLE_P(hash)) { ar_clear(hash); } else { st_clear(RHASH_ST_TABLE(hash)); compact_after_delete(hash); } return hash; }
Removes all entries from self
; returns emptied self
.
Related: see Methods for Deleting.
Sourcestatic VALUE rb_hash_compact(VALUE hash) { VALUE result = rb_hash_dup(hash); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(result, delete_if_nil, result); compact_after_delete(result); } else if (rb_hash_compare_by_id_p(hash)) { result = rb_hash_compare_by_id(result); } return result; }
Returns a copy of self
with all nil
-valued entries removed:
h = {foo: 0, bar: nil, baz: 2, bat: nil} h.compact
Related: see Methods for Deleting.
Sourcestatic VALUE rb_hash_compact_bang(VALUE hash) { st_index_t n; rb_hash_modify_check(hash); n = RHASH_SIZE(hash); if (n) { rb_hash_foreach(hash, delete_if_nil, hash); if (n != RHASH_SIZE(hash)) return hash; } return Qnil; }
If self
contains any nil
-valued entries, returns self
with all nil
-valued entries removed; returns nil
otherwise:
h = {foo: 0, bar: nil, baz: 2, bat: nil} h.compact! h h.compact!
Related: see Methods for Deleting.
SourceVALUE rb_hash_compare_by_id(VALUE hash) { VALUE tmp; st_table *identtable; if (rb_hash_compare_by_id_p(hash)) return hash; rb_hash_modify_check(hash); if (hash_iterating_p(hash)) { rb_raise(rb_eRuntimeError, "compare_by_identity during iteration"); } if (RHASH_TABLE_EMPTY_P(hash)) { // Fast path: There's nothing to rehash, so we don't need a `tmp` table. // We're most likely an AR table, so this will need an allocation. ar_force_convert_table(hash, __FILE__, __LINE__); HASH_ASSERT(RHASH_ST_TABLE_P(hash)); RHASH_ST_TABLE(hash)->type = &identhash; } else { // Slow path: Need to rehash the members of `self` into a new // `tmp` table using the new `identhash` compare/hash functions. tmp = hash_alloc(0); hash_st_table_init(tmp, &identhash, RHASH_SIZE(hash)); identtable = RHASH_ST_TABLE(tmp); rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp); rb_hash_free(hash); // We know for sure `identtable` is an st table, // so we can skip `ar_force_convert_table` here. RHASH_ST_TABLE_SET(hash, identtable); RHASH_ST_CLEAR(tmp); } return hash; }
Sets self
to compare keys using identity (rather than mere equality); returns self
:
By default, two keys are considered to be the same key if and only if they are equal objects (per method ==
):
h = {} h['x'] = 0 h['x'] = 1 h
When this method has been called, two keys are considered to be the same key if and only if they are the same object:
h.compare_by_identity h['x'] = 2 h
Related: compare_by_identity?
; see also Methods for Comparing.
static VALUE rb_hash_default(int argc, VALUE *argv, VALUE hash) { VALUE ifnone; rb_check_arity(argc, 0, 1); ifnone = RHASH_IFNONE(hash); if (FL_TEST(hash, RHASH_PROC_DEFAULT)) { if (argc == 0) return Qnil; return call_default_proc(ifnone, hash, argv[0]); } return ifnone; }
Returns the default value for the given key
. The returned value will be determined either by the default proc or by the default value. See Hash Default.
With no argument, returns the current default value:
h = {} h.default
If key
is given, returns the default value for key
, regardless of whether that key exists:
h = Hash.new { |hash, key| hash[key] = "No key #{key}"} h[:foo] = "Hello" h.default(:foo)Source
VALUE rb_hash_set_default(VALUE hash, VALUE ifnone) { rb_hash_modify_check(hash); SET_DEFAULT(hash, ifnone); return ifnone; }
Sets the default value to value
; returns value
:
h = {} h.default h.default = false h.default
See Hash Default.
Sourcestatic VALUE rb_hash_default_proc(VALUE hash) { if (FL_TEST(hash, RHASH_PROC_DEFAULT)) { return RHASH_IFNONE(hash); } return Qnil; }
Returns the default proc for self
(see Hash Default):
h = {} h.default_proc h.default_proc = proc {|hash, key| "Default value for #{key}" } h.default_proc.classSource
VALUE rb_hash_set_default_proc(VALUE hash, VALUE proc) { VALUE b; rb_hash_modify_check(hash); if (NIL_P(proc)) { SET_DEFAULT(hash, proc); return proc; } b = rb_check_convert_type_with_id(proc, T_DATA, "Proc", idTo_proc); if (NIL_P(b) || !rb_obj_is_proc(b)) { rb_raise(rb_eTypeError, "wrong default_proc type %s (expected Proc)", rb_obj_classname(proc)); } proc = b; SET_PROC_DEFAULT(hash, proc); return proc; }
Sets the default proc for self
to proc
(see Hash Default):
h = {} h.default_proc h.default_proc = proc { |hash, key| "Default value for #{key}" } h.default_proc.class h.default_proc = nil h.default_procSource
static VALUE rb_hash_delete_m(VALUE hash, VALUE key) { VALUE val; rb_hash_modify_check(hash); val = rb_hash_delete_entry(hash, key); if (!UNDEF_P(val)) { compact_after_delete(hash); return val; } else { if (rb_block_given_p()) { return rb_yield(key); } else { return Qnil; } } }
If an entry for the given key
is found, deletes the entry and returns its associated value; otherwise returns nil
or calls the given block.
With no block given and key
found, deletes the entry and returns its value:
h = {foo: 0, bar: 1, baz: 2} h.delete(:bar) h
With no block given and key
not found, returns nil
.
With a block given and key
found, ignores the block, deletes the entry, and returns its value:
h = {foo: 0, bar: 1, baz: 2} h.delete(:baz) { |key| raise 'Will never happen'} h
With a block given and key
not found, calls the block and returns the blockâs return value:
h = {foo: 0, bar: 1, baz: 2} h.delete(:nosuch) { |key| "Key #{key} not found" } h
Related: see Methods for Deleting.
SourceVALUE rb_hash_delete_if(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (!RHASH_TABLE_EMPTY_P(hash)) { rb_hash_foreach(hash, delete_if_i, hash); compact_after_delete(hash); } return hash; }
With a block given, calls the block with each key-value pair, deletes each entry for which the block returns a truthy value, and returns self
:
h = {foo: 0, bar: 1, baz: 2} h.delete_if {|key, value| value > 0 }
With no block given, returns a new Enumerator
.
Related: see Methods for Deleting.
Sourcestatic VALUE rb_hash_dig(int argc, VALUE *argv, VALUE self) { rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); self = rb_hash_aref(self, *argv); if (!--argc) return self; ++argv; return rb_obj_dig(argc, argv, self, Qnil); }
Finds and returns an object found in nested objects, as specified by key
and identifiers
.
The nested objects may be instances of various classes. See Dig Methods.
Nested hashes:
h = {foo: {bar: {baz: 2}}} h.dig(:foo) h.dig(:foo, :bar) h.dig(:foo, :bar, :baz) h.dig(:foo, :bar, :BAZ)
Nested hashes and arrays:
h = {foo: {bar: [:a, :b, :c]}} h.dig(:foo, :bar, 2)
If no such object is found, returns the hash default:
h = {foo: {bar: [:a, :b, :c]}} h.dig(:hello) h.default_proc = -> (hash, _key) { hash } h.dig(:hello, :world)
Related: Methods for Fetching.
Sourcestatic VALUE rb_hash_each_key(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_foreach(hash, each_key_i, 0); return hash; }
With a block given, calls the block with each key; returns self
:
h = {foo: 0, bar: 1, baz: 2} h.each_key {|key| puts key }
Output:
foo bar baz
With no block given, returns a new Enumerator
.
Related: see Methods for Iterating.
Sourcestatic VALUE rb_hash_each_pair(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); if (rb_block_pair_yield_optimizable()) rb_hash_foreach(hash, each_pair_i_fast, 0); else rb_hash_foreach(hash, each_pair_i, 0); return hash; }
With a block given, calls the block with each key-value pair; returns self
:
h = {foo: 0, bar: 1, baz: 2} h.each_pair {|key, value| puts "#{key}: #{value}"}
Output:
foo: 0 bar: 1 baz: 2
With no block given, returns a new Enumerator
.
Related: see Methods for Iterating.
Sourcestatic VALUE rb_hash_each_value(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_foreach(hash, each_value_i, 0); return hash; }
With a block given, calls the block with each value; returns self
:
h = {foo: 0, bar: 1, baz: 2} h.each_value {|value| puts value }
Output:
0 1 2
With no block given, returns a new Enumerator
.
Related: see Methods for Iterating.
SourceVALUE rb_hash_empty_p(VALUE hash) { return RBOOL(RHASH_EMPTY_P(hash)); }
Returns true
if there are no hash entries, false
otherwise:
{}.empty? {foo: 0}.empty?
Related: see Methods for Querying.
Sourcestatic VALUE rb_hash_eql(VALUE hash1, VALUE hash2) { return hash_equal(hash1, hash2, TRUE); }
Returns true
if all of the following are true:
The given object
is a Hash
object.
self
and object
have the same keys (regardless of order).
For each key key
, self[key].eql?(object[key])
.
Otherwise, returns false
.
h1 = {foo: 0, bar: 1, baz: 2} h2 = {foo: 0, bar: 1, baz: 2} h1.eql? h2 h3 = {baz: 2, bar: 1, foo: 0} h1.eql? h3
Related: see Methods for Querying.
Sourcestatic VALUE rb_hash_except(int argc, VALUE *argv, VALUE hash) { int i; VALUE key, result; result = hash_dup_with_compare_by_id(hash); for (i = 0; i < argc; i++) { key = argv[i]; rb_hash_delete(result, key); } compact_after_delete(result); return result; }
Returns a copy of self
that excludes entries for the given keys
; any keys
that are not found are ignored:
h = {foo:0, bar: 1, baz: 2} h.except(:baz, :foo) h.except(:bar, :nosuch)
Related: see Methods for Deleting.
Sourcestatic VALUE rb_hash_fetch_m(int argc, VALUE *argv, VALUE hash) { VALUE key; st_data_t val; long block_given; rb_check_arity(argc, 1, 2); key = argv[0]; block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } if (hash_stlike_lookup(hash, key, &val)) { return (VALUE)val; } else { if (block_given) { return rb_yield(key); } else if (argc == 1) { VALUE desc = rb_protect(rb_inspect, key, 0); if (NIL_P(desc)) { desc = rb_any_to_s(key); } desc = rb_str_ellipsize(desc, 65); rb_key_err_raise(rb_sprintf("key not found: %"PRIsVALUE, desc), hash, key); } else { return argv[1]; } } }
With no block given, returns the value for the given key
, if found;
h = {foo: 0, bar: 1, baz: 2} h.fetch(:bar)
If the key is not found, returns default_value
, if given, or raises KeyError
otherwise:
h.fetch(:nosuch, :default) h.fetch(:nosuch)
With a block given, calls the block with key
and returns the blockâs return value:
{}.fetch(:nosuch) {|key| "No key #{key}"}
Note that this method does not use the values of either default
or default_proc
.
Related: see Methods for Fetching.
Sourcestatic VALUE rb_hash_fetch_values(int argc, VALUE *argv, VALUE hash) { VALUE result = rb_ary_new2(argc); long i; for (i=0; i<argc; i++) { rb_ary_push(result, rb_hash_fetch(hash, argv[i])); } return result; }
When all given keys
are found, returns a new array containing the values associated with the given keys
:
h = {foo: 0, bar: 1, baz: 2} h.fetch_values(:baz, :foo)
When any given keys
are not found and a block is given, calls the block with each unfound key and uses the blockâs return value as the value for that key:
h.fetch_values(:bar, :foo, :bad, :bam) {|key| key.to_s}
When any given keys
are not found and no block is given, raises KeyError
.
Related: see Methods for Fetching.
Sourcestatic VALUE rb_hash_flatten(int argc, VALUE *argv, VALUE hash) { VALUE ary; rb_check_arity(argc, 0, 1); if (argc) { int level = NUM2INT(argv[0]); if (level == 0) return rb_hash_to_a(hash); ary = rb_ary_new_capa(RHASH_SIZE(hash) * 2); rb_hash_foreach(hash, flatten_i, ary); level--; if (level > 0) { VALUE ary_flatten_level = INT2FIX(level); rb_funcallv(ary, id_flatten_bang, 1, &ary_flatten_level); } else if (level < 0) { /* flatten recursively */ rb_funcallv(ary, id_flatten_bang, 0, 0); } } else { ary = rb_ary_new_capa(RHASH_SIZE(hash) * 2); rb_hash_foreach(hash, flatten_i, ary); } return ary; }
With positive integer depth
, returns a new array that is a recursive flattening of self
to the given depth
.
At each level of recursion:
Each element whose value is an array is âflattenedâ (that is, replaced by its individual array elements); see Array#flatten
.
Each element whose value is not an array is unchanged. even if the value is an object that has instance method flatten (such as a hash).
Examples; note that entry foo: {bar: 1, baz: 2}
is never flattened.
h = {foo: {bar: 1, baz: 2}, bat: [:bam, [:bap, [:bah]]]} h.flatten(1) h.flatten(2) h.flatten(3) h.flatten(4) h.flatten(5)
With negative integer depth
, flattens all levels:
h.flatten(-1)
With depth
zero, returns the equivalent of to_a
:
h.flatten(0)
Related: see Methods for Converting.
Sourcestatic VALUE rb_hash_hash(VALUE hash) { st_index_t size = RHASH_SIZE(hash); st_index_t hval = rb_hash_start(size); hval = rb_hash_uint(hval, (st_index_t)rb_hash_hash); if (size) { rb_hash_foreach(hash, hash_i, (VALUE)&hval); } hval = rb_hash_end(hval); return ST2FIX(hval); }
Returns the integer hash-code for the hash.
Two hashes have the same hash-code if their content is the same (regardless of order):
h1 = {foo: 0, bar: 1, baz: 2} h2 = {baz: 2, bar: 1, foo: 0} h2.hash == h1.hash h2.eql? h1
Related: see Methods for Querying.
SourceVALUE rb_hash_has_key(VALUE hash, VALUE key) { return RBOOL(hash_stlike_lookup(hash, key, NULL)); }
Returns whether key
is a key in self
:
h = {foo: 0, bar: 1, baz: 2} h.include?(:bar) h.include?(:BAR)
Related: Methods for Querying.
Sourcestatic VALUE rb_hash_inspect(VALUE hash) { if (RHASH_EMPTY_P(hash)) return rb_usascii_str_new2("{}"); return rb_exec_recursive(inspect_hash, hash, 0); }
Returns a new string containing the hash entries:
h = {foo: 0, bar: 1, baz: 2} h.inspect
Related: see Methods for Converting.
Sourcestatic VALUE rb_hash_invert(VALUE hash) { VALUE h = rb_hash_new_with_size(RHASH_SIZE(hash)); rb_hash_foreach(hash, rb_hash_invert_i, h); return h; }
Returns a new hash with each key-value pair inverted:
h = {foo: 0, bar: 1, baz: 2} h1 = h.invert h1
Overwrites any repeated new keys (see Entry Order):
h = {foo: 0, bar: 0, baz: 0} h.invert
Related: see Methods for Transforming Keys and Values.
Sourcestatic VALUE rb_hash_keep_if(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (!RHASH_TABLE_EMPTY_P(hash)) { rb_hash_foreach(hash, keep_if_i, hash); } return hash; }
With a block given, calls the block for each key-value pair; retains the entry if the block returns a truthy value; otherwise deletes the entry; returns self
:
h = {foo: 0, bar: 1, baz: 2} h.keep_if { |key, value| key.start_with?('b') }
With no block given, returns a new Enumerator
.
Related: see Methods for Deleting.
Sourcestatic VALUE rb_hash_key(VALUE hash, VALUE value) { VALUE args[2]; args[0] = value; args[1] = Qnil; rb_hash_foreach(hash, key_i, (VALUE)args); return args[1]; }
Returns the key for the first-found entry with the given value
(see Entry Order):
h = {foo: 0, bar: 2, baz: 2} h.key(0) h.key(2)
Returns nil
if no such value is found.
Related: see Methods for Fetching.
SourceVALUE rb_hash_keys(VALUE hash) { st_index_t size = RHASH_SIZE(hash); VALUE keys = rb_ary_new_capa(size); if (size == 0) return keys; if (ST_DATA_COMPATIBLE_P(VALUE)) { RARRAY_PTR_USE(keys, ptr, { if (RHASH_AR_TABLE_P(hash)) { size = ar_keys(hash, ptr, size); } else { st_table *table = RHASH_ST_TABLE(hash); size = st_keys(table, ptr, size); } }); rb_gc_writebarrier_remember(keys); rb_ary_set_len(keys, size); } else { rb_hash_foreach(hash, keys_i, keys); } return keys; }
Returns a new array containing all keys in self
:
h = {foo: 0, bar: 1, baz: 2} h.keys
Related: see Methods for Fetching.
Sourcestatic VALUE rb_hash_merge(int argc, VALUE *argv, VALUE self) { return rb_hash_update(argc, argv, copy_compare_by_id(rb_hash_dup(self), self)); }
Each argument other_hash
in other_hashes
must be a hash.
With arguments other_hashes
given and no block, returns the new hash formed by merging each successive other_hash
into a copy of self
; returns that copy; for each successive entry in other_hash
:
For a new key, the entry is added at the end of self
.
For duplicate key, the entry overwrites the entry in self
, whose position is unchanged.
Example:
h = {foo: 0, bar: 1, baz: 2} h1 = {bat: 3, bar: 4} h2 = {bam: 5, bat:6} h.merge(h1, h2)
With arguments other_hashes
and a block given, behaves as above except that for a duplicate key the overwriting entry takes it value not from the entry in other_hash
, but instead from the block:
The block is called with the duplicate key and the values from both self
and other_hash
.
The blockâs return value becomes the new value for the entry in self
.
Example:
h = {foo: 0, bar: 1, baz: 2} h1 = {bat: 3, bar: 4} h2 = {bam: 5, bat:6} h.merge(h1, h2) { |key, old_value, new_value| old_value + new_value }
With no arguments, returns a copy of self
; the block, if given, is ignored.
Related: see Methods for Assigning.
Sourcestatic VALUE rb_hash_rassoc(VALUE hash, VALUE obj) { VALUE args[2]; args[0] = obj; args[1] = Qnil; rb_hash_foreach(hash, rassoc_i, (VALUE)args); return args[1]; }
Searches self
for the first entry whose value is ==
to the given value
; see Entry Order.
If the entry is found, returns its key and value as a 2-element array; returns nil
if not found:
h = {foo: 0, bar: 1, baz: 1} h.rassoc(1)
Related: see Methods for Fetching.
SourceVALUE rb_hash_rehash(VALUE hash) { VALUE tmp; st_table *tbl; if (hash_iterating_p(hash)) { rb_raise(rb_eRuntimeError, "rehash during iteration"); } rb_hash_modify_check(hash); if (RHASH_AR_TABLE_P(hash)) { tmp = hash_alloc(0); rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp); hash_ar_free_and_clear_table(hash); ar_copy(hash, tmp); } else if (RHASH_ST_TABLE_P(hash)) { st_table *old_tab = RHASH_ST_TABLE(hash); tmp = hash_alloc(0); hash_st_table_init(tmp, old_tab->type, old_tab->num_entries); tbl = RHASH_ST_TABLE(tmp); rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp); hash_st_free(hash); RHASH_ST_TABLE_SET(hash, tbl); RHASH_ST_CLEAR(tmp); } hash_verify(hash); return hash; }
Rebuilds the hash table for self
by recomputing the hash index for each key; returns self
. Calling this method ensures that the hash table is valid.
The hash table becomes invalid if the hash value of a key has changed after the entry was created. See Modifying an Active Hash Key.
Sourcestatic VALUE rb_hash_reject(VALUE hash) { VALUE result; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); result = hash_dup_with_compare_by_id(hash); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(result, delete_if_i, result); compact_after_delete(result); } return result; }
With a block given, returns a copy of self
with zero or more entries removed; calls the block with each key-value pair; excludes the entry in the copy if the block returns a truthy value, includes it otherwise:
h = {foo: 0, bar: 1, baz: 2} h.reject {|key, value| key.start_with?('b') }
With no block given, returns a new Enumerator
.
Related: see Methods for Deleting.
Sourcestatic VALUE rb_hash_reject_bang(VALUE hash) { st_index_t n; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify(hash); n = RHASH_SIZE(hash); if (!n) return Qnil; rb_hash_foreach(hash, delete_if_i, hash); if (n == RHASH_SIZE(hash)) return Qnil; return hash; }
With a block given, calls the block with each entryâs key and value; removes the entry from self
if the block returns a truthy value.
Return self
if any entries were removed, nil
otherwise:
h = {foo: 0, bar: 1, baz: 2} h.reject! {|key, value| value < 2 } h.reject! {|key, value| value < 2 }
With no block given, returns a new Enumerator
.
Related: see Methods for Deleting.
Replaces the entire contents of self
with the contents of other_hash
; returns self
:
h = {foo: 0, bar: 1, baz: 2} h.replace({bat: 3, bam: 4})
Related: see Methods for Assigning.
Sourcestatic VALUE rb_hash_select(VALUE hash) { VALUE result; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); result = hash_dup_with_compare_by_id(hash); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(result, keep_if_i, result); compact_after_delete(result); } return result; }
With a block given, calls the block with each entryâs key and value; returns a new hash whose entries are those for which the block returns a truthy value:
h = {foo: 0, bar: 1, baz: 2} h.select {|key, value| value < 2 }
With no block given, returns a new Enumerator
.
Related: see Methods for Deleting.
Sourcestatic VALUE rb_hash_select_bang(VALUE hash) { st_index_t n; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); n = RHASH_SIZE(hash); if (!n) return Qnil; rb_hash_foreach(hash, keep_if_i, hash); if (n == RHASH_SIZE(hash)) return Qnil; return hash; }
With a block given, calls the block with each entryâs key and value; removes from self
each entry for which the block returns false
or nil
.
Returns self
if any entries were removed, nil
otherwise:
h = {foo: 0, bar: 1, baz: 2} h.select! {|key, value| value < 2 } h.select! {|key, value| value < 2 }
With no block given, returns a new Enumerator
.
Related: see Methods for Deleting.
Sourcestatic VALUE rb_hash_shift(VALUE hash) { struct shift_var var; rb_hash_modify_check(hash); if (RHASH_AR_TABLE_P(hash)) { var.key = Qundef; if (!hash_iterating_p(hash)) { if (ar_shift(hash, &var.key, &var.val)) { return rb_assoc_new(var.key, var.val); } } else { rb_hash_foreach(hash, shift_i_safe, (VALUE)&var); if (!UNDEF_P(var.key)) { rb_hash_delete_entry(hash, var.key); return rb_assoc_new(var.key, var.val); } } } if (RHASH_ST_TABLE_P(hash)) { var.key = Qundef; if (!hash_iterating_p(hash)) { if (st_shift(RHASH_ST_TABLE(hash), &var.key, &var.val)) { return rb_assoc_new(var.key, var.val); } } else { rb_hash_foreach(hash, shift_i_safe, (VALUE)&var); if (!UNDEF_P(var.key)) { rb_hash_delete_entry(hash, var.key); return rb_assoc_new(var.key, var.val); } } } return Qnil; }
Removes and returns the first entry of self
as a 2-element array; see Entry Order:
h = {foo: 0, bar: 1, baz: 2} h.shift h
Returns nil
if self
is empty.
Related: see Methods for Deleting.
SourceVALUE rb_hash_size(VALUE hash) { return INT2FIX(RHASH_SIZE(hash)); }
Returns the count of entries in self
:
{foo: 0, bar: 1, baz: 2}.size
Related: see Methods for Querying.
Sourcestatic VALUE rb_hash_slice(int argc, VALUE *argv, VALUE hash) { int i; VALUE key, value, result; if (argc == 0 || RHASH_EMPTY_P(hash)) { return copy_compare_by_id(rb_hash_new(), hash); } result = copy_compare_by_id(rb_hash_new_with_size(argc), hash); for (i = 0; i < argc; i++) { key = argv[i]; value = rb_hash_lookup2(hash, key, Qundef); if (!UNDEF_P(value)) rb_hash_aset(result, key, value); } return result; }
Returns a new hash containing the entries from self
for the given keys
; ignores any keys that are not found:
h = {foo: 0, bar: 1, baz: 2} h.slice(:baz, :foo, :nosuch)
Related: see Methods for Deleting.
Sourcestatic VALUE rb_hash_to_a(VALUE hash) { VALUE ary; ary = rb_ary_new_capa(RHASH_SIZE(hash)); rb_hash_foreach(hash, to_a_i, ary); return ary; }
Returns all elements of self
as an array of 2-element arrays; each nested array contains a key-value pair from self
:
h = {foo: 0, bar: 1, baz: 2} h.to_a
Related: see Methods for Converting.
Sourcestatic VALUE rb_hash_to_h(VALUE hash) { if (rb_block_given_p()) { return rb_hash_to_h_block(hash); } if (rb_obj_class(hash) != rb_cHash) { const VALUE flags = RBASIC(hash)->flags; hash = hash_dup(hash, rb_cHash, flags & RHASH_PROC_DEFAULT); } return hash; }
With a block given, returns a new hash whose content is based on the block; the block is called with each entryâs key and value; the block should return a 2-element array containing the key and value to be included in the returned array:
h = {foo: 0, bar: 1, baz: 2} h.to_h {|key, value| [value, key] }
With no block given, returns self
if self
is an instance of Hash
; if self
is a subclass of Hash
, returns a new hash containing the content of self
.
Related: see Methods for Converting.
Sourcestatic VALUE rb_hash_to_proc(VALUE hash) { return rb_func_lambda_new(hash_proc_call, hash, 1, 1); }
Returns a Proc
object that maps a key to its value:
h = {foo: 0, bar: 1, baz: 2} proc = h.to_proc proc.class proc.call(:foo) proc.call(:bar) proc.call(:nosuch)
Related: see Methods for Converting.
Sourcestatic VALUE rb_hash_transform_keys(int argc, VALUE *argv, VALUE hash) { VALUE result; struct transform_keys_args transarg = {0}; argc = rb_check_arity(argc, 0, 1); if (argc > 0) { transarg.trans = to_hash(argv[0]); transarg.block_given = rb_block_given_p(); } else { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); } result = rb_hash_new(); if (!RHASH_EMPTY_P(hash)) { if (transarg.trans) { transarg.result = result; rb_hash_foreach(hash, transform_keys_hash_i, (VALUE)&transarg); } else { rb_hash_foreach(hash, transform_keys_i, result); } } return result; }
With an argument, a block, or both given, derives a new hash new_hash
from self
, the argument, and/or the block; all, some, or none of its keys may be different from those in self
.
With a block given and no argument, new_hash
has keys determined only by the block.
For each key/value pair old_key/value
in self
, calls the block with old_key
; the blockâs return value becomes new_key
; sets new_hash[new_key] = value
; a duplicate key overwrites:
h = {foo: 0, bar: 1, baz: 2} h.transform_keys {|old_key| old_key.to_s } h.transform_keys {|old_key| 'xxx' }
With argument other_hash
given and no block, new_hash
may have new keys provided by other_hash
and unchanged keys provided by self
.
For each key/value pair old_key/old_value
in self
, looks for key old_key
in other_hash
:
If old_key
is found, its value other_hash[old_key]
is taken as new_key
; sets new_hash[new_key] = value
; a duplicate key overwrites:
h = {foo: 0, bar: 1, baz: 2} h.transform_keys(baz: :BAZ, bar: :BAR, foo: :FOO) h.transform_keys(baz: :FOO, bar: :FOO, foo: :FOO)
If old_key
is not found, sets new_hash[old_key] = value
; a duplicate key overwrites:
h = {foo: 0, bar: 1, baz: 2} h.transform_keys({}) h.transform_keys(baz: :foo)
Unused keys in other_hash
are ignored:
h = {foo: 0, bar: 1, baz: 2} h.transform_keys(bat: 3)
With both argument other_hash
and a block given, new_hash
has new keys specified by other_hash
or by the block, and unchanged keys provided by self
.
For each pair old_key
and value
in self
:
If other_hash
has key old_key
(with value new_key
), does not call the block for that key; sets new_hash[new_key] = value
; a duplicate key overwrites:
h = {foo: 0, bar: 1, baz: 2} h.transform_keys(baz: :BAZ, bar: :BAR, foo: :FOO) {|key| fail 'Not called' }
If other_hash
does not have key old_key
, calls the block with old_key
and takes its return value as new_key
; sets new_hash[new_key] = value
; a duplicate key overwrites:
h = {foo: 0, bar: 1, baz: 2} h.transform_keys(baz: :BAZ) {|key| key.to_s.reverse } h.transform_keys(baz: :BAZ) {|key| 'ook' }
With no argument and no block given, returns a new Enumerator
.
Related: see Methods for Transforming Keys and Values.
Sourcestatic VALUE rb_hash_transform_keys_bang(int argc, VALUE *argv, VALUE hash) { VALUE trans = 0; int block_given = 0; argc = rb_check_arity(argc, 0, 1); if (argc > 0) { trans = to_hash(argv[0]); block_given = rb_block_given_p(); } else { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); } rb_hash_modify_check(hash); if (!RHASH_TABLE_EMPTY_P(hash)) { long i; VALUE new_keys = hash_alloc(0); VALUE pairs = rb_ary_hidden_new(RHASH_SIZE(hash) * 2); rb_hash_foreach(hash, flatten_i, pairs); for (i = 0; i < RARRAY_LEN(pairs); i += 2) { VALUE key = RARRAY_AREF(pairs, i), new_key, val; if (!trans) { new_key = rb_yield(key); } else if (!UNDEF_P(new_key = rb_hash_lookup2(trans, key, Qundef))) { /* use the transformed key */ } else if (block_given) { new_key = rb_yield(key); } else { new_key = key; } val = RARRAY_AREF(pairs, i+1); if (!hash_stlike_lookup(new_keys, key, NULL)) { rb_hash_stlike_delete(hash, &key, NULL); } rb_hash_aset(hash, new_key, val); rb_hash_aset(new_keys, new_key, Qnil); } rb_ary_clear(pairs); rb_hash_clear(new_keys); } compact_after_delete(hash); return hash; }
With an argument, a block, or both given, derives keys from the argument, the block, and self
; all, some, or none of the keys in self
may be changed.
With a block given and no argument, derives keys only from the block; all, some, or none of the keys in self
may be changed.
For each key/value pair old_key/value
in self
, calls the block with old_key
; the blockâs return value becomes new_key
; removes the entry for old_key
: self.delete(old_key)
; sets self[new_key] = value
; a duplicate key overwrites:
h = {foo: 0, bar: 1, baz: 2} h.transform_keys! {|old_key| old_key.to_s } h = {foo: 0, bar: 1, baz: 2} h.transform_keys! {|old_key| 'xxx' }
With argument other_hash
given and no block, derives keys for self
from other_hash
and self
; all, some, or none of the keys in self
may be changed.
For each key/value pair old_key/old_value
in self
, looks for key old_key
in other_hash
:
If old_key
is found, takes value other_hash[old_key]
as new_key
; removes the entry for old_key
: self.delete(old_key)
; sets self[new_key] = value
; a duplicate key overwrites:
h = {foo: 0, bar: 1, baz: 2} h.transform_keys!(baz: :BAZ, bar: :BAR, foo: :FOO) h = {foo: 0, bar: 1, baz: 2} h.transform_keys!(baz: :FOO, bar: :FOO, foo: :FOO)
If old_key
is not found, does nothing:
h = {foo: 0, bar: 1, baz: 2} h.transform_keys!({}) h.transform_keys!(baz: :foo)
Unused keys in other_hash
are ignored:
h = {foo: 0, bar: 1, baz: 2} h.transform_keys!(bat: 3)
With both argument other_hash
and a block given, derives keys from other_hash
, the block, and self
; all, some, or none of the keys in self
may be changed.
For each pair old_key
and value
in self
:
If other_hash
has key old_key
(with value new_key
), does not call the block for that key; removes the entry for old_key
: self.delete(old_key)
; sets self[new_key] = value
; a duplicate key overwrites:
h = {foo: 0, bar: 1, baz: 2} h.transform_keys!(baz: :BAZ, bar: :BAR, foo: :FOO) {|key| fail 'Not called' }
If other_hash
does not have key old_key
, calls the block with old_key
and takes its return value as new_key
; removes the entry for old_key
: self.delete(old_key)
; sets self[new_key] = value
; a duplicate key overwrites:
h = {foo: 0, bar: 1, baz: 2} h.transform_keys!(baz: :BAZ) {|key| key.to_s.reverse } h = {foo: 0, bar: 1, baz: 2} h.transform_keys!(baz: :BAZ) {|key| 'ook' }
With no argument and no block given, returns a new Enumerator
.
Related: see Methods for Transforming Keys and Values.
Sourcestatic VALUE rb_hash_transform_values(VALUE hash) { VALUE result; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); result = hash_dup_with_compare_by_id(hash); SET_DEFAULT(result, Qnil); if (!RHASH_EMPTY_P(hash)) { transform_values(result); compact_after_delete(result); } return result; }
With a block given, returns a new hash new_hash
; for each pair key
/value
in self
, calls the block with value
and captures its return as new_value
; adds to new_hash
the entry key
/new_value
:
h = {foo: 0, bar: 1, baz: 2} h1 = h.transform_values {|value| value * 100} h1
With no block given, returns a new Enumerator
.
Related: see Methods for Transforming Keys and Values.
Sourcestatic VALUE rb_hash_transform_values_bang(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (!RHASH_TABLE_EMPTY_P(hash)) { transform_values(hash); } return hash; }
With a block given, changes the values of self
as determined by the block; returns self
.
For each entry key
/old_value
in self
, calls the block with old_value
, captures its return value as new_value
, and sets self[key] = new_value
:
h = {foo: 0, bar: 1, baz: 2} h.transform_values! {|value| value * 100}
With no block given, returns a new Enumerator
.
Related: see Methods for Transforming Keys and Values.
Sourcestatic VALUE rb_hash_update(int argc, VALUE *argv, VALUE self) { struct update_call_args args = { .hash = self, .argv = argv, .argc = argc, .block_given = rb_block_given_p(), .iterating = false, }; VALUE arg = (VALUE)&args; rb_hash_modify(self); return rb_ensure(rb_hash_update_call, arg, rb_hash_update_ensure, arg); }
Updates values and/or adds entries to self
; returns self
.
Each argument other_hash
in other_hashes
must be a hash.
With no block given, for each successive entry key
/new_value
in each successive other_hash
:
If key
is in self
, sets self[key] = new_value
, whose position is unchanged:
h0 = {foo: 0, bar: 1, baz: 2} h1 = {bar: 3, foo: -1} h0.update(h1)
If key
is not in self
, adds the entry at the end of self
:
h = {foo: 0, bar: 1, baz: 2} h.update({bam: 3, bah: 4})
With a block given, for each successive entry key
/new_value
in each successive other_hash
:
If key
is in self
, fetches old_value
from self[key]
, calls the block with key
, old_value
, and new_value
, and sets self[key] = new_value
, whose position is unchanged :
season = {AB: 75, H: 20, HR: 3, SO: 17, W: 11, HBP: 3} today = {AB: 3, H: 1, W: 1} yesterday = {AB: 4, H: 2, HR: 1} season.update(yesterday, today) {|key, old_value, new_value| old_value + new_value }
If key
is not in self
, adds the entry at the end of self
:
h = {foo: 0, bar: 1, baz: 2} h.update({bat: 3}) { fail 'Cannot happen' }
Related: see Methods for Assigning.
SourceVALUE rb_hash_values(VALUE hash) { VALUE values; st_index_t size = RHASH_SIZE(hash); values = rb_ary_new_capa(size); if (size == 0) return values; if (ST_DATA_COMPATIBLE_P(VALUE)) { if (RHASH_AR_TABLE_P(hash)) { rb_gc_writebarrier_remember(values); RARRAY_PTR_USE(values, ptr, { size = ar_values(hash, ptr, size); }); } else if (RHASH_ST_TABLE_P(hash)) { st_table *table = RHASH_ST_TABLE(hash); rb_gc_writebarrier_remember(values); RARRAY_PTR_USE(values, ptr, { size = st_values(table, ptr, size); }); } rb_ary_set_len(values, size); } else { rb_hash_foreach(hash, values_i, values); } return values; }
Returns a new array containing all values in self
:
h = {foo: 0, bar: 1, baz: 2} h.values
Related: see Methods for Fetching.
Sourcestatic VALUE rb_hash_values_at(int argc, VALUE *argv, VALUE hash) { VALUE result = rb_ary_new2(argc); long i; for (i=0; i<argc; i++) { rb_ary_push(result, rb_hash_aref(hash, argv[i])); } return result; }
Returns a new array containing values for the given keys
:
h = {foo: 0, bar: 1, baz: 2} h.values_at(:baz, :foo)
The hash default is returned for each key that is not found:
h.values_at(:hello, :foo)
Related: see Methods for Fetching.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4