A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.ruby-lang.org/en/3.4/RubyVM/../Object.html below:

class Object - Documentation for Ruby 3.4

class Object

Object is the default root of all Ruby objects. Object inherits from BasicObject which allows creating alternate object hierarchies. Methods on Object are available to all classes unless explicitly overridden.

Object mixes in the Kernel module, making the built-in kernel functions globally accessible. Although the instance methods of Object are defined by the Kernel module, we have chosen to document them here for clarity.

When referencing constants in classes inheriting from Object you do not need to use the full namespace. For example, referencing File inside YourClass will find the top-level File class.

In the descriptions of Object’s methods, the parameter symbol refers to a symbol, which is either a quoted string or a Symbol (such as :name).

What’s Here

First, what’s elsewhere. Class Object:

Here, class Object provides methods for:

Querying Instance Variables Other Constants
ARGF

ARGF is a stream designed for use in scripts that process files given as command-line arguments or passed in via STDIN.

See ARGF (the class) for more details.

ARGV

ARGV contains the command line arguments used to run ruby.

A library like OptionParser can be used to process command-line arguments.

CROSS_COMPILING
DATA

DATA is a File that contains the data section of the executed file. To create a data section use __END__:

$ cat t.rb
puts DATA.gets
__END__
hello world!

$ ruby t.rb
hello world!
ENV

ENV is a Hash-like accessor for environment variables.

See ENV (the class) for more details.

RUBY_COPYRIGHT

The copyright string for ruby

RUBY_DESCRIPTION

The full ruby version string, like ruby -v prints

RUBY_ENGINE

The engine or interpreter this ruby uses.

RUBY_ENGINE_VERSION

The version of the engine or interpreter this ruby uses.

RUBY_PATCHLEVEL

The patchlevel for this ruby. If this is a development build of ruby the patchlevel will be -1

RUBY_PLATFORM

The platform for this ruby

RUBY_RELEASE_DATE

The date this ruby was released

RUBY_REVISION

The GIT commit hash for this ruby.

RUBY_VERSION

The running version of ruby

Readline
Ripper

This writes the prism ripper translation into the Ripper constant so that users can transparently use Ripper without any changes.

STDERR

Holds the original stderr

STDIN

Holds the original stdin

STDOUT

Holds the original stdout

TOPLEVEL_BINDING

The Binding of the top level scope

Public Class Methods

Source

def self.yaml_tag url
  Psych.add_tag(url, self)
end
Public Instance Methods

Source

static VALUE
rb_obj_not_match(VALUE obj1, VALUE obj2)
{
    VALUE result = rb_funcall(obj1, id_match, 1, obj2);
    return rb_obj_not(result);
}

Returns true if two objects do not match (using the =~ method), otherwise false.

Source

static VALUE
rb_obj_cmp(VALUE obj1, VALUE obj2)
{
    if (rb_equal(obj1, obj2))
        return INT2FIX(0);
    return Qnil;
}

Returns 0 if obj and other are the same object or obj == other, otherwise nil.

The <=> is used by various methods to compare objects, for example Enumerable#sort, Enumerable#max etc.

Your implementation of <=> should return one of the following values: -1, 0, 1 or nil. -1 means self is smaller than other. 0 means self is equal to other. 1 means self is bigger than other. Nil means the two values could not be compared.

When you define <=>, you can include Comparable to gain the methods <=, <, ==, >=, > and between?.

Source

#define case_equal rb_equal

Returns true or false.

Like Object#==, if object is an instance of Object (and not an instance of one of its many subclasses).

This method is commonly overridden by those subclasses, to provide meaningful semantics in case statements.

Source

def DelegateClass(superclass, &block)
  klass = Class.new(Delegator)
  ignores = [*::Delegator.public_api, :to_s, :inspect, :=~, :!~, :===]
  protected_instance_methods = superclass.protected_instance_methods
  protected_instance_methods -= ignores
  public_instance_methods = superclass.public_instance_methods
  public_instance_methods -= ignores
  klass.module_eval do
    def __getobj__ 
      unless defined?(@delegate_dc_obj)
        return yield if block_given?
        __raise__ ::ArgumentError, "not delegated"
      end
      @delegate_dc_obj
    end
    def __setobj__(obj)  
      __raise__ ::ArgumentError, "cannot delegate to self" if self.equal?(obj)
      @delegate_dc_obj = obj
    end
    protected_instance_methods.each do |method|
      define_method(method, Delegator.delegating_block(method))
      protected method
    end
    public_instance_methods.each do |method|
      define_method(method, Delegator.delegating_block(method))
    end
  end
  klass.define_singleton_method :public_instance_methods do |all=true|
    super(all) | superclass.public_instance_methods
  end
  klass.define_singleton_method :protected_instance_methods do |all=true|
    super(all) | superclass.protected_instance_methods
  end
  klass.define_singleton_method :instance_methods do |all=true|
    super(all) | superclass.instance_methods
  end
  klass.define_singleton_method :public_instance_method do |name|
    super(name)
  rescue NameError
    raise unless self.public_instance_methods.include?(name)
    superclass.public_instance_method(name)
  end
  klass.define_singleton_method :instance_method do |name|
    super(name)
  rescue NameError
    raise unless self.instance_methods.include?(name)
    superclass.instance_method(name)
  end
  klass.module_eval(&block) if block
  return klass
end

The primary interface to this library. Use to setup delegation when defining your class.

class MyClass < DelegateClass(ClassToDelegateTo) 
  def initialize
    super(obj_of_ClassToDelegateTo)              
  end
end

or:

MyClass = DelegateClass(ClassToDelegateTo) do    
  def initialize
    super(obj_of_ClassToDelegateTo)              
  end
end

Here’s a sample of use from Tempfile which is really a File object with a few special rules about storage location and when the File should be deleted. That makes for an almost textbook perfect example of how to use delegation.

class Tempfile < DelegateClass(File)
  

  def initialize(basename, tmpdir=Dir::tmpdir)
    

    @tmpfile = File.open(tmpname, File::RDWR|File::CREAT|File::EXCL, 0600)

    

    super(@tmpfile)

    
  end

  
end

Calls superclass method

Source

def Digest(name)
  const = name.to_sym
  Digest::REQUIRE_MUTEX.synchronize {
    
    Digest.const_missing(const)
  }
rescue LoadError
  
  if Digest.const_defined?(const)
    Digest.const_get(const)
  else
    raise
  end
end

Returns a Digest subclass by name in a thread-safe manner even when on-demand loading is involved.

require 'digest'

Digest("MD5")


Digest(:SHA256)


Digest(:Foo)

Source

static VALUE
rb_obj_define_method(int argc, VALUE *argv, VALUE obj)
{
    VALUE klass = rb_singleton_class(obj);
    const rb_scope_visibility_t scope_visi = {METHOD_VISI_PUBLIC, FALSE};

    return rb_mod_define_method_with_visibility(argc, argv, klass, &scope_visi);
}

Defines a public singleton method in the receiver. The method parameter can be a Proc, a Method or an UnboundMethod object. If a block is specified, it is used as the method body. If a block or a method has parameters, they’re used as method parameters.

class A
  class << self
    def class_name
      to_s
    end
  end
end
A.define_singleton_method(:who_am_i) do
  "I am: #{class_name}"
end
A.who_am_i   

guy = "Bob"
guy.define_singleton_method(:hello) { "#{self}: Hello there!" }
guy.hello    

chris = "Chris"
chris.define_singleton_method(:greet) {|greeting| "#{greeting}, I'm Chris!" }
chris.greet("Hi") 

Source

static VALUE
rb_obj_display(int argc, VALUE *argv, VALUE self)
{
    VALUE out;

    out = (!rb_check_arity(argc, 0, 1) ? rb_ractor_stdout() : argv[0]);
    rb_io_write(out, self);

    return Qnil;
}

Writes self on the given port:

1.display
"cat".display
[ 4, 5, 6 ].display
puts

Output:

1cat[4, 5, 6]

Source

VALUE
rb_obj_dup(VALUE obj)
{
    VALUE dup;

    if (special_object_p(obj)) {
        return obj;
    }
    dup = rb_obj_alloc(rb_obj_class(obj));
    return rb_obj_dup_setup(obj, dup);
}

Produces a shallow copy of obj—the instance variables of obj are copied, but not the objects they reference.

This method may have class-specific behavior. If so, that behavior will be documented under the #initialize_copy method of the class.

on dup vs clone

In general, clone and dup may have different semantics in descendant classes. While clone is used to duplicate an object, including its internal state, dup typically uses the class of the descendant object to create the new instance.

When using dup, any modules that the object has been extended with will not be copied.

class Klass
  attr_accessor :str
end

module Foo
  def foo; 'foo'; end
end

s1 = Klass.new 
s1.extend(Foo) 
s1.foo 

s2 = s1.clone 
s2.foo 

s3 = s1.dup 
s3.foo 

Creates a new Enumerator which will enumerate by calling method on obj, passing args if any. What was yielded by method becomes values of enumerator.

If a block is given, it will be used to calculate the size of the enumerator without the need to iterate it (see Enumerator#size).

Examples
str = "xyz"

enum = str.enum_for(:each_byte)
enum.each { |b| puts b }





a = [1, 2, 3]
some_method(a.to_enum)


very_large_string.split("|") { |chunk| return chunk if chunk.include?('DATE') }

very_large_string.to_enum(:split, "|").lazy.grep(/DATE/).first

It is typical to call to_enum when defining methods for a generic Enumerable, in case no block is passed.

Here is such an example, with parameter passing and a sizing block:

module Enumerable
  
  def repeat(n)
    raise ArgumentError, "#{n} is negative!" if n < 0
    unless block_given?
      return to_enum(__method__, n) do 
        sz = size     
        sz * n if sz  
      end
    end
    each do |*val|
      n.times { yield *val }
    end
  end
end

%i[hello world].repeat(2) { |w| puts w }
  
enum = (1..14).repeat(3)
  
enum.first(4) 
enum.size 

Source

VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
    return RBOOL(obj1 == obj2);
}

Equality — At the Object level, == returns true only if obj and other are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.

Unlike ==, the equal? method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b) if and only if a is the same object as b):

obj = "a"
other = obj.dup

obj == other      
obj.equal? other  
obj.equal? obj    

The eql? method returns true if obj and other refer to the same hash key. This is used by Hash to test members for equality. For any pair of objects where eql? returns true, the hash value of both objects must be equal. So any subclass that overrides eql? should also override hash appropriately.

For objects of class Object, eql? is synonymous with ==. Subclasses normally continue this tradition by aliasing eql? to their overridden == method, but there are exceptions. Numeric types, for example, perform type conversion across ==, but not across eql?, so:

1 == 1.0     
1.eql? 1.0   

Source

static VALUE
rb_obj_extend(int argc, VALUE *argv, VALUE obj)
{
    int i;
    ID id_extend_object, id_extended;

    CONST_ID(id_extend_object, "extend_object");
    CONST_ID(id_extended, "extended");

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    for (i = 0; i < argc; i++) {
        Check_Type(argv[i], T_MODULE);
        if (FL_TEST(argv[i], RMODULE_IS_REFINEMENT)) {
            rb_raise(rb_eTypeError, "Cannot extend object with refinement");
        }
    }
    while (argc--) {
        rb_funcall(argv[argc], id_extend_object, 1, obj);
        rb_funcall(argv[argc], id_extended, 1, obj);
    }
    return obj;
}

Adds to obj the instance methods from each module given as a parameter.

module Mod
  def hello
    "Hello from Mod.\n"
  end
end

class Klass
  def hello
    "Hello from Klass.\n"
  end
end

k = Klass.new
k.hello         
k.extend(Mod)   
k.hello         

Source

VALUE
rb_obj_freeze(VALUE obj)
{
    if (!OBJ_FROZEN(obj)) {
        OBJ_FREEZE(obj);
        if (SPECIAL_CONST_P(obj)) {
            rb_bug("special consts should be frozen.");
        }
    }
    return obj;
}

Prevents further modifications to obj. A FrozenError will be raised if modification is attempted. There is no way to unfreeze a frozen object. See also Object#frozen?.

This method returns self.

a = [ "a", "b", "c" ]
a.freeze
a << "z"

produces:

prog.rb:3:in `<<': can't modify frozen Array (FrozenError)
 from prog.rb:3

Objects of the following classes are always frozen: Integer, Float, Symbol.

Source

VALUE
rb_obj_hash(VALUE obj)
{
    long hnum = any_hash(obj, objid_hash);
    return ST2FIX(hnum);
}

Generates an Integer hash value for this object. This function must have the property that a.eql?(b) implies a.hash == b.hash.

The hash value is used along with eql? by the Hash class to determine if two objects reference the same hash key. Any hash value that exceeds the capacity of an Integer will be truncated before being used.

The hash value for an object may not be identical across invocations or implementations of Ruby. If you need a stable identifier across Ruby invocations and implementations you will need to generate one with a custom method.

Certain core classes such as Integer use built-in hash calculations and do not call the hash method when used as a hash key.

When implementing your own hash based on multiple values, the best practice is to combine the class and any values using the hash code of an array:

For example:

def hash
  [self.class, a, b, c].hash
end

The reason for this is that the Array#hash method already has logic for safely and efficiently combining multiple hash values.

Source

static VALUE
rb_obj_inspect(VALUE obj)
{
    if (rb_ivar_count(obj) > 0) {
        VALUE str;
        VALUE c = rb_class_name(CLASS_OF(obj));

        str = rb_sprintf("-<%"PRIsVALUE":%p", c, (void*)obj);
        return rb_exec_recursive(inspect_obj, obj, str);
    }
    else {
        return rb_any_to_s(obj);
    }
}

Returns a string containing a human-readable representation of obj. The default inspect shows the object’s class name, an encoding of its memory address, and a list of the instance variables and their values (by calling inspect on each of them). User defined classes should override this method to provide a better representation of obj. When overriding this method, it should return a string whose encoding is compatible with the default external encoding.

[ 1, 2, 3..4, 'five' ].inspect   
Time.new.inspect                 

class Foo
end
Foo.new.inspect                  

class Bar
  def initialize
    @bar = 1
  end
end
Bar.new.inspect                  

Source

VALUE
rb_obj_is_instance_of(VALUE obj, VALUE c)
{
    c = class_or_module_required(c);
    return RBOOL(rb_obj_class(obj) == c);
}

Returns true if obj is an instance of the given class. See also Object#kind_of?.

class A;     end
class B < A; end
class C < B; end

b = B.new
b.instance_of? A   
b.instance_of? B   
b.instance_of? C   

Source

static VALUE
rb_obj_ivar_defined(VALUE obj, VALUE iv)
{
    ID id = id_for_var(obj, iv, instance);

    if (!id) {
        return Qfalse;
    }
    return rb_ivar_defined(obj, id);
}

Returns true if the given instance variable is defined in obj. String arguments are converted to symbols.

class Fred
  def initialize(p1, p2)
    @a, @b = p1, p2
  end
end
fred = Fred.new('cat', 99)
fred.instance_variable_defined?(:@a)    
fred.instance_variable_defined?("@b")   
fred.instance_variable_defined?("@c")   

Source

static VALUE
rb_obj_ivar_get(VALUE obj, VALUE iv)
{
    ID id = id_for_var(obj, iv, instance);

    if (!id) {
        return Qnil;
    }
    return rb_ivar_get(obj, id);
}

Returns the value of the given instance variable, or nil if the instance variable is not set. The @ part of the variable name should be included for regular instance variables. Throws a NameError exception if the supplied symbol is not valid as an instance variable name. String arguments are converted to symbols.

class Fred
  def initialize(p1, p2)
    @a, @b = p1, p2
  end
end
fred = Fred.new('cat', 99)
fred.instance_variable_get(:@a)    
fred.instance_variable_get("@b")   

Source

static VALUE
rb_obj_ivar_set_m(VALUE obj, VALUE iv, VALUE val)
{
    ID id = id_for_var(obj, iv, instance);
    if (!id) id = rb_intern_str(iv);
    return rb_ivar_set(obj, id, val);
}

Sets the instance variable named by symbol to the given object. This may circumvent the encapsulation intended by the author of the class, so it should be used with care. The variable does not have to exist prior to this call. If the instance variable name is passed as a string, that string is converted to a symbol.

class Fred
  def initialize(p1, p2)
    @a, @b = p1, p2
  end
end
fred = Fred.new('cat', 99)
fred.instance_variable_set(:@a, 'dog')   
fred.instance_variable_set(:@c, 'cat')   
fred.inspect                             

Source

VALUE
rb_obj_instance_variables(VALUE obj)
{
    VALUE ary;

    ary = rb_ary_new();
    rb_ivar_foreach(obj, ivar_i, ary);
    return ary;
}

Returns an array of instance variable names for the receiver. Note that simply defining an accessor does not create the corresponding instance variable.

class Fred
  attr_accessor :a1
  def initialize
    @iv = 3
  end
end
Fred.new.instance_variables   

Returns true if class is the class of obj, or if class is one of the superclasses of obj or modules included in obj.

module M;    end
class A
  include M
end
class B < A; end
class C < B; end

b = B.new
b.is_a? A          
b.is_a? B          
b.is_a? C          
b.is_a? M          

b.kind_of? A       
b.kind_of? B       
b.kind_of? C       
b.kind_of? M       

Source

static VALUE
rb_obj_itself(VALUE obj)
{
    return obj;
}

Returns the receiver.

string = "my string"
string.itself.object_id == string.object_id   

Source

VALUE
rb_obj_is_kind_of(VALUE obj, VALUE c)
{
    VALUE cl = CLASS_OF(obj);

    RUBY_ASSERT(RB_TYPE_P(cl, T_CLASS));

    // Fastest path: If the object's class is an exact match we know `c` is a
    // class without checking type and can return immediately.
    if (cl == c) return Qtrue;

    // Note: YJIT needs this function to never allocate and never raise when
    // `c` is a class or a module.

    if (LIKELY(RB_TYPE_P(c, T_CLASS))) {
        // Fast path: Both are T_CLASS
        return class_search_class_ancestor(cl, c);
    }
    else if (RB_TYPE_P(c, T_ICLASS)) {
        // First check if we inherit the includer
        // If we do we can return true immediately
        VALUE includer = RCLASS_INCLUDER(c);
        if (cl == includer) return Qtrue;

        // Usually includer is a T_CLASS here, except when including into an
        // already included Module.
        // If it is a class, attempt the fast class-to-class check and return
        // true if there is a match.
        if (RB_TYPE_P(includer, T_CLASS) && class_search_class_ancestor(cl, includer))
            return Qtrue;

        // We don't include the ICLASS directly, so must check if we inherit
        // the module via another include
        return RBOOL(class_search_ancestor(cl, RCLASS_ORIGIN(c)));
    }
    else if (RB_TYPE_P(c, T_MODULE)) {
        // Slow path: check each ancestor in the linked list and its method table
        return RBOOL(class_search_ancestor(cl, RCLASS_ORIGIN(c)));
    }
    else {
        rb_raise(rb_eTypeError, "class or module required");
        UNREACHABLE_RETURN(Qfalse);
    }
}

Returns true if class is the class of obj, or if class is one of the superclasses of obj or modules included in obj.

module M;    end
class A
  include M
end
class B < A; end
class C < B; end

b = B.new
b.is_a? A          
b.is_a? B          
b.is_a? C          
b.is_a? M          

b.kind_of? A       
b.kind_of? B       
b.kind_of? C       
b.kind_of? M       

Source

VALUE
rb_obj_method(VALUE obj, VALUE vid)
{
    return obj_method(obj, vid, FALSE);
}

Looks up the named method as a receiver in obj, returning a Method object (or raising NameError). The Method object acts as a closure in obj’s object instance, so instance variables and the value of self remain available.

class Demo
  def initialize(n)
    @iv = n
  end
  def hello()
    "Hello, @iv = #{@iv}"
  end
end

k = Demo.new(99)
m = k.method(:hello)
m.call   

l = Demo.new('Fred')
m = l.method("hello")
m.call   

Note that Method implements to_proc method, which means it can be used with iterators.

[ 1, 2, 3 ].each(&method(:puts)) 

out = File.open('test.txt', 'w')
[ 1, 2, 3 ].each(&out.method(:puts)) 

require 'date'
%w[2017-03-01 2017-03-02].collect(&Date.method(:parse))

Source

VALUE
rb_obj_methods(int argc, const VALUE *argv, VALUE obj)
{
    rb_check_arity(argc, 0, 1);
    if (argc > 0 && !RTEST(argv[0])) {
        return rb_obj_singleton_methods(argc, argv, obj);
    }
    return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_i);
}

Returns a list of the names of public and protected methods of obj. This will include all the methods accessible in obj’s ancestors. If the optional parameter is false, it returns an array of obj’s public and protected singleton methods, the array will not include methods in modules included in obj.

class Klass
  def klass_method()
  end
end
k = Klass.new
k.methods[0..9]    
                   
                   
k.methods.length   

k.methods(false)   
def k.singleton_method; end
k.methods(false)   

module M123; def m123; end end
k.extend M123
k.methods(false)   

Source

VALUE
rb_false(VALUE obj)
{
    return Qfalse;
}

Only the object nil responds true to nil?.

Object.new.nil?   
nil.nil?          

Source

VALUE
rb_obj_id(VALUE obj)
{
    /* If obj is an immediate, the object ID is obj directly converted to a Numeric.
     * Otherwise, the object ID is a Numeric that is a non-zero multiple of
     * (RUBY_IMMEDIATE_MASK + 1) which guarantees that it does not collide with
     * any immediates. */
    return rb_find_object_id(rb_gc_get_objspace(), obj, rb_gc_impl_object_id);
}

Returns an integer identifier for obj.

The same number will be returned on all calls to object_id for a given object, and no two active objects will share an id.

Note: that some objects of builtin classes are reused for optimization. This is the case for immediate values and frozen string literals.

BasicObject implements __id__, Kernel implements object_id.

Immediate values are not passed by reference but are passed by value: nil, true, false, Fixnums, Symbols, and some Floats.

Object.new.object_id  == Object.new.object_id  
(21 * 2).object_id    == (21 * 2).object_id    
"hello".object_id     == "hello".object_id     
"hi".freeze.object_id == "hi".freeze.object_id 

Source

VALUE
rb_obj_private_methods(int argc, const VALUE *argv, VALUE obj)
{
    return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_priv_i);
}

Returns the list of private methods accessible to obj. If the all parameter is set to false, only those methods in the receiver will be listed.

Source

VALUE
rb_obj_protected_methods(int argc, const VALUE *argv, VALUE obj)
{
    return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_prot_i);
}

Returns the list of protected methods accessible to obj. If the all parameter is set to false, only those methods in the receiver will be listed.

Source

VALUE
rb_obj_public_method(VALUE obj, VALUE vid)
{
    return obj_method(obj, vid, TRUE);
}

Similar to method, searches public method only.

Source

VALUE
rb_obj_public_methods(int argc, const VALUE *argv, VALUE obj)
{
    return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_pub_i);
}

Returns the list of public methods accessible to obj. If the all parameter is set to false, only those methods in the receiver will be listed.

Source

static VALUE
rb_f_public_send(int argc, VALUE *argv, VALUE recv)
{
    return send_internal_kw(argc, argv, recv, CALL_PUBLIC);
}

Invokes the method identified by symbol, passing it any arguments specified. Unlike send, public_send calls public methods only. When the method is identified by a string, the string is converted to a symbol.

1.public_send(:puts, "hello")  

Source

VALUE
rb_obj_remove_instance_variable(VALUE obj, VALUE name)
{
    const ID id = id_for_var(obj, name, an, instance);

    // Frozen check comes here because it's expected that we raise a
    // NameError (from the id_for_var check) before we raise a FrozenError
    rb_check_frozen(obj);

    if (id) {
        VALUE val = rb_ivar_delete(obj, id, Qundef);

        if (!UNDEF_P(val)) return val;
    }

    rb_name_err_raise("instance variable %1$s not defined",
                      obj, name);
    UNREACHABLE_RETURN(Qnil);
}

Removes the named instance variable from obj, returning that variable’s value. The name can be passed as a symbol or as a string.

class Dummy
  attr_reader :var
  def initialize
    @var = 99
  end
  def remove
    remove_instance_variable(:@var)
  end
end
d = Dummy.new
d.var      
d.remove   
d.var      

Source

static VALUE
obj_respond_to(int argc, VALUE *argv, VALUE obj)
{
    VALUE mid, priv;
    ID id;
    rb_execution_context_t *ec = GET_EC();

    rb_scan_args(argc, argv, "11", &mid, &priv);
    if (!(id = rb_check_id(&mid))) {
        VALUE ret = basic_obj_respond_to_missing(ec, CLASS_OF(obj), obj,
                                                 rb_to_symbol(mid), priv);
        if (UNDEF_P(ret)) ret = Qfalse;
        return ret;
    }
    return  RBOOL(basic_obj_respond_to(ec, obj, id, !RTEST(priv)));
}

Returns true if obj responds to the given method. Private and protected methods are included in the search only if the optional second parameter evaluates to true.

If the method is not implemented, as Process.fork on Windows, File.lchmod on GNU/Linux, etc., false is returned.

If the method is not defined, respond_to_missing? method is called and the result is returned.

When the method name parameter is given as a string, the string is converted to a symbol.

Source

static VALUE
obj_respond_to_missing(VALUE obj, VALUE mid, VALUE priv)
{
    return Qfalse;
}

DO NOT USE THIS DIRECTLY.

Hook method to return whether the obj can respond to id method or not.

When the method name parameter is given as a string, the string is converted to a symbol.

See respond_to?, and the example of BasicObject.

Source

VALUE
rb_f_send(int argc, VALUE *argv, VALUE recv)
{
    return send_internal_kw(argc, argv, recv, CALL_FCALL);
}

Invokes the method identified by symbol, passing it any arguments specified. When the method is identified by a string, the string is converted to a symbol.

BasicObject implements __send__, Kernel implements send. __send__ is safer than send when obj has the same method name like Socket. See also public_send.

class Klass
  def hello(*args)
    "Hello " + args.join(' ')
  end
end
k = Klass.new
k.send :hello, "gentle", "readers"   

Source

static VALUE
rb_obj_singleton_class(VALUE obj)
{
    return rb_singleton_class(obj);
}

Returns the singleton class of obj. This method creates a new singleton class if obj does not have one.

If obj is nil, true, or false, it returns NilClass, TrueClass, or FalseClass, respectively. If obj is an Integer, a Float or a Symbol, it raises a TypeError.

Object.new.singleton_class  
String.singleton_class      
nil.singleton_class         

Source

VALUE
rb_obj_singleton_method(VALUE obj, VALUE vid)
{
    VALUE sc = rb_singleton_class_get(obj);
    VALUE klass;
    ID id = rb_check_id(&vid);

    if (NIL_P(sc) ||
        NIL_P(klass = RCLASS_ORIGIN(sc)) ||
        !NIL_P(rb_special_singleton_class(obj))) {
        /* goto undef; */
    }
    else if (! id) {
        VALUE m = mnew_missing_by_name(klass, obj, &vid, FALSE, rb_cMethod);
        if (m) return m;
        /* else goto undef; */
    }
    else {
        VALUE args[2] = {obj, vid};
        VALUE ruby_method = rb_rescue(rb_obj_singleton_method_lookup, (VALUE)args, rb_obj_singleton_method_lookup_fail, Qfalse);
        if (ruby_method) {
            struct METHOD *method = (struct METHOD *)RTYPEDDATA_GET_DATA(ruby_method);
            VALUE lookup_class = RBASIC_CLASS(obj);
            VALUE stop_class = rb_class_superclass(sc);
            VALUE method_class = method->iclass;

            /* Determine if method is in singleton class, or module included in or prepended to it */
            do {
                if (lookup_class == method_class) {
                    return ruby_method;
                }
                lookup_class = RCLASS_SUPER(lookup_class);
            } while (lookup_class && lookup_class != stop_class);
        }
    }

  /* undef: */
    vid = ID2SYM(id);
    rb_name_err_raise("undefined singleton method '%1$s' for '%2$s'",
                      obj, vid);
    UNREACHABLE_RETURN(Qundef);
}

Similar to method, searches singleton method only.

class Demo
  def initialize(n)
    @iv = n
  end
  def hello()
    "Hello, @iv = #{@iv}"
  end
end

k = Demo.new(99)
def k.hi
  "Hi, @iv = #{@iv}"
end
m = k.singleton_method(:hi)
m.call   
m = k.singleton_method(:hello) 

Source

VALUE
rb_obj_singleton_methods(int argc, const VALUE *argv, VALUE obj)
{
    VALUE ary, klass, origin;
    struct method_entry_arg me_arg;
    struct rb_id_table *mtbl;
    int recur = TRUE;

    if (rb_check_arity(argc, 0, 1)) recur = RTEST(argv[0]);
    if (RCLASS_SINGLETON_P(obj)) {
        rb_singleton_class(obj);
    }
    klass = CLASS_OF(obj);
    origin = RCLASS_ORIGIN(klass);
    me_arg.list = st_init_numtable();
    me_arg.recur = recur;
    if (klass && RCLASS_SINGLETON_P(klass)) {
        if ((mtbl = RCLASS_M_TBL(origin)) != 0) rb_id_table_foreach(mtbl, method_entry_i, &me_arg);
        klass = RCLASS_SUPER(klass);
    }
    if (recur) {
        while (klass && (RCLASS_SINGLETON_P(klass) || RB_TYPE_P(klass, T_ICLASS))) {
            if (klass != origin && (mtbl = RCLASS_M_TBL(klass)) != 0) rb_id_table_foreach(mtbl, method_entry_i, &me_arg);
            klass = RCLASS_SUPER(klass);
        }
    }
    ary = rb_ary_new2(me_arg.list->num_entries);
    st_foreach(me_arg.list, ins_methods_i, ary);
    st_free_table(me_arg.list);

    return ary;
}

Returns an array of the names of singleton methods for obj. If the optional all parameter is true, the list will include methods in modules included in obj. Only public and protected singleton methods are returned.

module Other
  def three() end
end

class Single
  def Single.four() end
end

a = Single.new

def a.one()
end

class << a
  include Other
  def two()
  end
end

Single.singleton_methods    
a.singleton_methods(false)  
a.singleton_methods         

Source

static VALUE
obj_to_enum(int argc, VALUE *argv, VALUE obj)
{
    VALUE enumerator, meth = sym_each;

    if (argc > 0) {
        --argc;
        meth = *argv++;
    }
    enumerator = rb_enumeratorize_with_size(obj, meth, argc, argv, 0);
    if (rb_block_given_p()) {
        RB_OBJ_WRITE(enumerator, &enumerator_ptr(enumerator)->size, rb_block_proc());
    }
    return enumerator;
}

Creates a new Enumerator which will enumerate by calling method on obj, passing args if any. What was yielded by method becomes values of enumerator.

If a block is given, it will be used to calculate the size of the enumerator without the need to iterate it (see Enumerator#size).

Examples
str = "xyz"

enum = str.enum_for(:each_byte)
enum.each { |b| puts b }





a = [1, 2, 3]
some_method(a.to_enum)


very_large_string.split("|") { |chunk| return chunk if chunk.include?('DATE') }

very_large_string.to_enum(:split, "|").lazy.grep(/DATE/).first

It is typical to call to_enum when defining methods for a generic Enumerable, in case no block is passed.

Here is such an example, with parameter passing and a sizing block:

module Enumerable
  
  def repeat(n)
    raise ArgumentError, "#{n} is negative!" if n < 0
    unless block_given?
      return to_enum(__method__, n) do 
        sz = size     
        sz * n if sz  
      end
    end
    each do |*val|
      n.times { yield *val }
    end
  end
end

%i[hello world].repeat(2) { |w| puts w }
  
enum = (1..14).repeat(3)
  
enum.first(4) 
enum.size 

Source

VALUE
rb_any_to_s(VALUE obj)
{
    VALUE str;
    VALUE cname = rb_class_name(CLASS_OF(obj));

    str = rb_sprintf("#<%"PRIsVALUE":%p>", cname, (void*)obj);

    return str;
}

Returns a string representing obj. The default to_s prints the object’s class and an encoding of the object id. As a special case, the top-level object that is the initial execution context of Ruby programs returns “main”.

Source

def to_yaml options = {}
  Psych.dump self, options
end

Convert an object to YAML. See Psych.dump for more information on the available options.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4