A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.ruby-lang.org/en/3.4/RubyVM/../Integer.html below:

class Integer - Documentation for Ruby 3.4

class Integer

An Integer object represents an integer value.

You can create an Integer object explicitly with:

You can convert certain objects to Integers with:

An attempt to add a singleton method to an instance of this class causes an exception to be raised.

What’s Here

First, what’s elsewhere. Class Integer:

Here, class Integer provides methods for:

Querying Comparing Converting Other Constants
GMP_VERSION

The version of loaded GMP.

Public Class Methods

Source

static VALUE
rb_int_s_isqrt(VALUE self, VALUE num)
{
    unsigned long n, sq;
    num = rb_to_int(num);
    if (FIXNUM_P(num)) {
        if (FIXNUM_NEGATIVE_P(num)) {
            domain_error("isqrt");
        }
        n = FIX2ULONG(num);
        sq = rb_ulong_isqrt(n);
        return LONG2FIX(sq);
    }
    else {
        size_t biglen;
        if (RBIGNUM_NEGATIVE_P(num)) {
            domain_error("isqrt");
        }
        biglen = BIGNUM_LEN(num);
        if (biglen == 0) return INT2FIX(0);
#if SIZEOF_BDIGIT <= SIZEOF_LONG
        /* short-circuit */
        if (biglen == 1) {
            n = BIGNUM_DIGITS(num)[0];
            sq = rb_ulong_isqrt(n);
            return ULONG2NUM(sq);
        }
#endif
        return rb_big_isqrt(num);
    }
}

Returns the integer square root of the non-negative integer n, which is the largest non-negative integer less than or equal to the square root of numeric.

Integer.sqrt(0)       
Integer.sqrt(1)       
Integer.sqrt(24)      
Integer.sqrt(25)      
Integer.sqrt(10**400) 

If numeric is not an Integer, it is converted to an Integer:

Integer.sqrt(Complex(4, 0))  
Integer.sqrt(Rational(4, 1)) 
Integer.sqrt(4.0)            
Integer.sqrt(3.14159)        

This method is equivalent to Math.sqrt(numeric).floor, except that the result of the latter code may differ from the true value due to the limited precision of floating point arithmetic.

Integer.sqrt(10**46)    
Math.sqrt(10**46).floor 

Raises an exception if numeric is negative.

Source

static VALUE
int_s_try_convert(VALUE self, VALUE num)
{
    return rb_check_integer_type(num);
}

If object is an Integer object, returns object.

Integer.try_convert(1) 

Otherwise if object responds to :to_int, calls object.to_int and returns the result.

Integer.try_convert(1.25) 

Returns nil if object does not respond to :to_int

Integer.try_convert([]) 

Raises an exception unless object.to_int returns an Integer object.

Public Instance Methods

Source

VALUE
rb_int_modulo(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_mod(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_modulo(x, y);
    }
    return num_modulo(x, y);
}

Returns self modulo other as a real number.

For integer n and real number r, these expressions are equivalent:

n % r
n-r*(n/r).floor
n.divmod(r)[1]

See Numeric#divmod.

Examples:

10 % 2              
10 % 3              
10 % 4              

10 % -2             
10 % -3             
10 % -4             

10 % 3.0            
10 % Rational(3, 1) 

Source

VALUE
rb_int_and(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_and(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_and(x, y);
    }
    return Qnil;
}

Bitwise AND; each bit in the result is 1 if both corresponding bits in self and other are 1, 0 otherwise:

"%04b" % (0b0101 & 0b0110) 

Raises an exception if other is not an Integer.

Related: Integer#| (bitwise OR), Integer#^ (bitwise EXCLUSIVE OR).

Source

VALUE
rb_int_mul(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_mul(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_mul(x, y);
    }
    return rb_num_coerce_bin(x, y, '*');
}

Performs multiplication:

4 * 2              
4 * -2             
-4 * 2             
4 * 2.0            
4 * Rational(1, 3) 
4 * Complex(2, 0)  

Source

VALUE
rb_int_pow(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_pow(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_pow(x, y);
    }
    return Qnil;
}

Raises self to the power of numeric:

2 ** 3              
2 ** -3             
-2 ** 3             
-2 ** -3            
2 ** 3.3            
2 ** Rational(3, 1) 
2 ** Complex(3, 0)  

Source

VALUE
rb_int_plus(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_plus(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_plus(x, y);
    }
    return rb_num_coerce_bin(x, y, '+');
}

Performs addition:

2 + 2              
-2 + 2             
-2 + -2            
2 + 2.0            
2 + Rational(2, 1) 
2 + Complex(2, 0)  

Source

VALUE
rb_int_minus(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_minus(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_minus(x, y);
    }
    return rb_num_coerce_bin(x, y, '-');
}

Performs subtraction:

4 - 2              
-4 - 2             
-4 - -2            
4 - 2.0            
4 - Rational(2, 1) 
4 - Complex(2, 0)  

Source

def -@
  Primitive.attr! :leaf
  Primitive.cexpr! 'rb_int_uminus(self)'
end

Returns self, negated.

Source

VALUE
rb_int_div(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_div(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_div(x, y);
    }
    return Qnil;
}

Performs division; for integer numeric, truncates the result to an integer:

 4 / 3              # => 1
 4 / -3             # => -2
 -4 / 3             # => -2
 -4 / -3            # => 1

For other +numeric+, returns non-integer result:

 4 / 3.0            # => 1.3333333333333333
 4 / Rational(3, 1) # => (4/3)
 4 / Complex(3, 0)  # => ((4/3)+0i)

Source

static VALUE
int_lt(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_lt(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_lt(x, y);
    }
    return Qnil;
}

Returns true if the value of self is less than that of other:

  1 < 0              # => false
  1 < 1              # => false
  1 < 2              # => true
  1 < 0.5            # => false
  1 < Rational(1, 2) # => false

Raises an exception if the comparison cannot be made.

Source

VALUE
rb_int_lshift(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return rb_fix_lshift(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_lshift(x, y);
    }
    return Qnil;
}

Returns self with bits shifted count positions to the left, or to the right if count is negative:

n = 0b11110000
"%08b" % (n << 1)  
"%08b" % (n << 3)  
"%08b" % (n << -1) 
"%08b" % (n << -3) 

Related: Integer#>>.

Source

static VALUE
int_le(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_le(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_le(x, y);
    }
    return Qnil;
}

Returns true if the value of self is less than or equal to that of other:

1 <= 0              
1 <= 1              
1 <= 2              
1 <= 0.5            
1 <= Rational(1, 2) 

Raises an exception if the comparison cannot be made.

Source

VALUE
rb_int_cmp(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_cmp(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_cmp(x, y);
    }
    else {
        rb_raise(rb_eNotImpError, "need to define '<=>' in %s", rb_obj_classname(x));
    }
}

Returns:

Examples:

1 <=> 2              
1 <=> 1              
1 <=> 0              
1 <=> 'foo'          

1 <=> 1.0            
1 <=> Rational(1, 1) 
1 <=> Complex(1, 0)  

This method is the basis for comparisons in module Comparable.

Returns true if self is numerically equal to other; false otherwise.

1 == 2     
1 == 1.0   

Related: Integer#eql? (requires other to be an Integer).

Source

VALUE
rb_int_gt(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_gt(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_gt(x, y);
    }
    return Qnil;
}

Returns true if the value of self is greater than that of other:

  1 > 0              # => true
  1 > 1              # => false
  1 > 2              # => false
  1 > 0.5            # => true
  1 > Rational(1, 2) # => true

Raises an exception if the comparison cannot be made.

Source

VALUE
rb_int_ge(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_ge(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_ge(x, y);
    }
    return Qnil;
}

Returns true if the value of self is greater than or equal to that of other:

1 >= 0              
1 >= 1              
1 >= 2              
1 >= 0.5            
1 >= Rational(1, 2) 

Raises an exception if the comparison cannot be made.

Source

VALUE
rb_int_rshift(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return rb_fix_rshift(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_rshift(x, y);
    }
    return Qnil;
}

Returns self with bits shifted count positions to the right, or to the left if count is negative:

n = 0b11110000
"%08b" % (n >> 1)  
"%08b" % (n >> 3)  
"%08b" % (n >> -1) 
"%08b" % (n >> -3) 

Related: Integer#<<.

Source

static VALUE
int_aref(int const argc, VALUE * const argv, VALUE const num)
{
    rb_check_arity(argc, 1, 2);
    if (argc == 2) {
        return int_aref2(num, argv[0], argv[1]);
    }
    return int_aref1(num, argv[0]);

    return Qnil;
}

Returns a slice of bits from self.

With argument offset, returns the bit at the given offset, where offset 0 refers to the least significant bit:

n = 0b10 
n[0]     
n[1]     
n[2]     
n[3]     

In principle, n[i] is equivalent to (n >> i) & 1. Thus, negative index always returns zero:

255[-1] 

With arguments offset and size, returns size bits from self, beginning at offset and including bits of greater significance:

n = 0b111000       
"%010b" % n[0, 10] 
"%010b" % n[4, 10] 

With argument range, returns range.size bits from self, beginning at range.begin and including bits of greater significance:

n = 0b111000      
"%010b" % n[0..9] 
"%010b" % n[4..9] 

Raises an exception if the slice cannot be constructed.

Source

static VALUE
int_xor(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_xor(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_xor(x, y);
    }
    return Qnil;
}

Bitwise EXCLUSIVE OR; each bit in the result is 1 if the corresponding bits in self and other are different, 0 otherwise:

"%04b" % (0b0101 ^ 0b0110) 

Raises an exception if other is not an Integer.

Related: Integer#& (bitwise AND), Integer#| (bitwise OR).

Source

static VALUE
int_or(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_or(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_or(x, y);
    }
    return Qnil;
}

Bitwise OR; each bit in the result is 1 if either corresponding bit in self or other is 1, 0 otherwise:

"%04b" % (0b0101 | 0b0110) 

Raises an exception if other is not an Integer.

Related: Integer#& (bitwise AND), Integer#^ (bitwise EXCLUSIVE OR).

Source

def ~
  Primitive.attr! :leaf
  Primitive.cexpr! 'rb_int_comp(self)'
end

One’s complement: returns the value of self with each bit inverted.

Because an integer value is conceptually of infinite length, the result acts as if it had an infinite number of one bits to the left. In hex representations, this is displayed as two periods to the left of the digits:

sprintf("%X", ~0x1122334455)    

Source

def abs
  Primitive.attr! :leaf
  Primitive.cexpr! 'rb_int_abs(self)'
end

Returns the absolute value of self.

(-12345).abs 
-12345.abs   
12345.abs    

Source

static VALUE
int_allbits_p(VALUE num, VALUE mask)
{
    mask = rb_to_int(mask);
    return rb_int_equal(rb_int_and(num, mask), mask);
}

Returns true if all bits that are set (=1) in mask are also set in self; returns false otherwise.

Example values:

0b1010101  self
0b1010100  mask
0b1010100  self & mask
     true  self.allbits?(mask)

0b1010100  self
0b1010101  mask
0b1010100  self & mask
    false  self.allbits?(mask)

Related: Integer#anybits?, Integer#nobits?.

Source

static VALUE
int_anybits_p(VALUE num, VALUE mask)
{
    mask = rb_to_int(mask);
    return RBOOL(!int_zero_p(rb_int_and(num, mask)));
}

Returns true if any bit that is set (=1) in mask is also set in self; returns false otherwise.

Example values:

0b10000010  self
0b11111111  mask
0b10000010  self & mask
      true  self.anybits?(mask)

0b00000000  self
0b11111111  mask
0b00000000  self & mask
     false  self.anybits?(mask)

Related: Integer#allbits?, Integer#nobits?.

Source

def bit_length
  Primitive.attr! :leaf
  Primitive.cexpr! 'rb_int_bit_length(self)'
end

Returns the number of bits of the value of self, which is the bit position of the highest-order bit that is different from the sign bit (where the least significant bit has bit position 1). If there is no such bit (zero or minus one), returns zero.

This method returns ceil(log2(self < 0 ? -self : self + 1))>.

(-2**1000-1).bit_length   
(-2**1000).bit_length     
(-2**1000+1).bit_length   
(-2**12-1).bit_length     
(-2**12).bit_length       
(-2**12+1).bit_length     
-0x101.bit_length         
-0x100.bit_length         
-0xff.bit_length          
-2.bit_length             
-1.bit_length             
0.bit_length              
1.bit_length              
0xff.bit_length           
0x100.bit_length          
(2**12-1).bit_length      
(2**12).bit_length        
(2**12+1).bit_length      
(2**1000-1).bit_length    
(2**1000).bit_length      
(2**1000+1).bit_length    

For Integer n, this method can be used to detect overflow in Array#pack:

if n.bit_length < 32
  [n].pack('l') 
else
  raise 'Overflow'
end

Source

static VALUE
int_ceil(int argc, VALUE* argv, VALUE num)
{
    int ndigits;

    if (!rb_check_arity(argc, 0, 1)) return num;
    ndigits = NUM2INT(argv[0]);
    if (ndigits >= 0) {
        return num;
    }
    return rb_int_ceil(num, ndigits);
}

Returns an integer that is a “ceiling” value for self, as specified by the given ndigits, which must be an integer-convertible object.

Related: Integer#floor.

Source

def ceildiv(other)
  -div(0 - other)
end

Returns the result of division self by numeric. rounded up to the nearest integer.

3.ceildiv(3)   
4.ceildiv(3)   

4.ceildiv(-3)  
-4.ceildiv(3)  
-4.ceildiv(-3) 

3.ceildiv(1.2) 

Source

static VALUE
int_chr(int argc, VALUE *argv, VALUE num)
{
    char c;
    unsigned int i;
    rb_encoding *enc;

    if (rb_num_to_uint(num, &i) == 0) {
    }
    else if (FIXNUM_P(num)) {
        rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
    }
    else {
        rb_raise(rb_eRangeError, "bignum out of char range");
    }

    switch (argc) {
      case 0:
        if (0xff < i) {
            enc = rb_default_internal_encoding();
            if (!enc) {
                rb_raise(rb_eRangeError, "%u out of char range", i);
            }
            goto decode;
        }
        c = (char)i;
        if (i < 0x80) {
            return rb_usascii_str_new(&c, 1);
        }
        else {
            return rb_str_new(&c, 1);
        }
      case 1:
        break;
      default:
        rb_error_arity(argc, 0, 1);
    }
    enc = rb_to_encoding(argv[0]);
    if (!enc) enc = rb_ascii8bit_encoding();
  decode:
    return rb_enc_uint_chr(i, enc);
}

Returns a 1-character string containing the character represented by the value of self, according to the given encoding.

65.chr                   
0.chr                    
255.chr                  
string = 255.chr(Encoding::UTF_8)
string.encoding          

Raises an exception if self is negative.

Related: Integer#ord.

Source

static VALUE
rb_int_coerce(VALUE x, VALUE y)
{
    if (RB_INTEGER_TYPE_P(y)) {
        return rb_assoc_new(y, x);
    }
    else {
        x = rb_Float(x);
        y = rb_Float(y);
        return rb_assoc_new(y, x);
    }
}

Returns an array with both a numeric and a int represented as Integer objects or Float objects.

This is achieved by converting numeric to an Integer or a Float.

A TypeError is raised if the numeric is not an Integer or a Float type.

(0x3FFFFFFFFFFFFFFF+1).coerce(42)   

Source

static VALUE
rb_int_digits(int argc, VALUE *argv, VALUE num)
{
    VALUE base_value;
    long base;

    if (rb_num_negative_p(num))
        rb_raise(rb_eMathDomainError, "out of domain");

    if (rb_check_arity(argc, 0, 1)) {
        base_value = rb_to_int(argv[0]);
        if (!RB_INTEGER_TYPE_P(base_value))
            rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)",
                     rb_obj_classname(argv[0]));
        if (RB_BIGNUM_TYPE_P(base_value))
            return rb_int_digits_bigbase(num, base_value);

        base = FIX2LONG(base_value);
        if (base < 0)
            rb_raise(rb_eArgError, "negative radix");
        else if (base < 2)
            rb_raise(rb_eArgError, "invalid radix %ld", base);
    }
    else
        base = 10;

    if (FIXNUM_P(num))
        return rb_fix_digits(num, base);
    else if (RB_BIGNUM_TYPE_P(num))
        return rb_int_digits_bigbase(num, LONG2FIX(base));

    return Qnil;
}

Returns an array of integers representing the base-radix digits of self; the first element of the array represents the least significant digit:

12345.digits      
12345.digits(7)   
12345.digits(100) 

Raises an exception if self is negative or base is less than 2.

Source

VALUE
rb_int_idiv(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_idiv(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_idiv(x, y);
    }
    return num_div(x, y);
}

Performs integer division; returns the integer result of dividing self by numeric:

4.div(3)              
4.div(-3)             
-4.div(3)             
-4.div(-3)            
4.div(3.0)            
4.div(Rational(3, 1)) 

Raises an exception if numeric does not have method div.

Source

VALUE
rb_int_divmod(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_divmod(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_divmod(x, y);
    }
    return Qnil;
}

Returns a 2-element array [q, r], where

q = (self/other).floor    
r = self % other          

Examples:

11.divmod(4)              
11.divmod(-4)             
-11.divmod(4)             
-11.divmod(-4)            

12.divmod(4)              
12.divmod(-4)             
-12.divmod(4)             
-12.divmod(-4)            

13.divmod(4.0)            
13.divmod(Rational(4, 1)) 

Source

static VALUE
int_downto(VALUE from, VALUE to)
{
    RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
    if (FIXNUM_P(from) && FIXNUM_P(to)) {
        long i, end;

        end = FIX2LONG(to);
        for (i=FIX2LONG(from); i >= end; i--) {
            rb_yield(LONG2FIX(i));
        }
    }
    else {
        VALUE i = from, c;

        while (!(c = rb_funcall(i, '<', 1, to))) {
            rb_yield(i);
            i = rb_funcall(i, '-', 1, INT2FIX(1));
        }
        if (NIL_P(c)) rb_cmperr(i, to);
    }
    return from;
}

Calls the given block with each integer value from self down to limit; returns self:

a = []
10.downto(5) {|i| a << i }              
a                                       
a = []
0.downto(-5) {|i| a << i }              
a                                       
4.downto(5) {|i| fail 'Cannot happen' } 

With no block given, returns an Enumerator.

Source

def even?
  Primitive.attr! :leaf
  Primitive.cexpr! 'rb_int_even_p(self)'
end

Returns true if self is an even number, false otherwise.

Source

VALUE
rb_int_fdiv(VALUE x, VALUE y)
{
    if (RB_INTEGER_TYPE_P(x)) {
        return DBL2NUM(rb_int_fdiv_double(x, y));
    }
    return Qnil;
}

Returns the Float result of dividing self by numeric:

4.fdiv(2)      
4.fdiv(-2)      
-4.fdiv(2)      
4.fdiv(2.0)      
4.fdiv(Rational(3, 4))      

Raises an exception if numeric cannot be converted to a Float.

Source

static VALUE
int_floor(int argc, VALUE* argv, VALUE num)
{
    int ndigits;

    if (!rb_check_arity(argc, 0, 1)) return num;
    ndigits = NUM2INT(argv[0]);
    if (ndigits >= 0) {
        return num;
    }
    return rb_int_floor(num, ndigits);
}

Returns an integer that is a “floor” value for self, as specified by the given ndigits, which must be an integer-convertible object.

Related: Integer#ceil.

Source

VALUE
rb_gcd(VALUE self, VALUE other)
{
    other = nurat_int_value(other);
    return f_gcd(self, other);
}

Returns the greatest common divisor of the two integers. The result is always positive. 0.gcd(x) and x.gcd(0) return x.abs.

36.gcd(60)                  
2.gcd(2)                    
3.gcd(-7)                   
((1<<31)-1).gcd((1<<61)-1)  

Source

VALUE
rb_gcdlcm(VALUE self, VALUE other)
{
    other = nurat_int_value(other);
    return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
}

Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm].

36.gcdlcm(60)                  
2.gcdlcm(2)                    
3.gcdlcm(-7)                   
((1<<31)-1).gcdlcm((1<<61)-1)  

Source

Since self is already an Integer, always returns true.

Source

VALUE
rb_lcm(VALUE self, VALUE other)
{
    other = nurat_int_value(other);
    return f_lcm(self, other);
}

Returns the least common multiple of the two integers. The result is always positive. 0.lcm(x) and x.lcm(0) return zero.

36.lcm(60)                  
2.lcm(2)                    
3.lcm(-7)                   
((1<<31)-1).lcm((1<<61)-1)  

Source

static VALUE
int_nobits_p(VALUE num, VALUE mask)
{
    mask = rb_to_int(mask);
    return RBOOL(int_zero_p(rb_int_and(num, mask)));
}

Returns true if no bit that is set (=1) in mask is also set in self; returns false otherwise.

Example values:

0b11110000  self
0b00001111  mask
0b00000000  self & mask
      true  self.nobits?(mask)

0b00000001  self
0b11111111  mask
0b00000001  self & mask
     false  self.nobits?(mask)

Related: Integer#allbits?, Integer#anybits?.

Source

def odd?
  Primitive.attr! :leaf
  Primitive.cexpr! 'rb_int_odd_p(self)'
end

Returns true if self is an odd number, false otherwise.

Source

Returns self; intended for compatibility to character literals in Ruby 1.9.

Source

VALUE
rb_int_powm(int const argc, VALUE * const argv, VALUE const num)
{
    rb_check_arity(argc, 1, 2);

    if (argc == 1) {
        return rb_int_pow(num, argv[0]);
    }
    else {
        VALUE const a = num;
        VALUE const b = argv[0];
        VALUE m = argv[1];
        int nega_flg = 0;
        if ( ! RB_INTEGER_TYPE_P(b)) {
            rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless a 1st argument is integer");
        }
        if (rb_int_negative_p(b)) {
            rb_raise(rb_eRangeError, "Integer#pow() 1st argument cannot be negative when 2nd argument specified");
        }
        if (!RB_INTEGER_TYPE_P(m)) {
            rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless all arguments are integers");
        }

        if (rb_int_negative_p(m)) {
            m = rb_int_uminus(m);
            nega_flg = 1;
        }

        if (FIXNUM_P(m)) {
            long const half_val = (long)HALF_LONG_MSB;
            long const mm = FIX2LONG(m);
            if (!mm) rb_num_zerodiv();
            if (mm == 1) return INT2FIX(0);
            if (mm <= half_val) {
                return int_pow_tmp1(rb_int_modulo(a, m), b, mm, nega_flg);
            }
            else {
                return int_pow_tmp2(rb_int_modulo(a, m), b, mm, nega_flg);
            }
        }
        else {
            if (rb_bigzero_p(m)) rb_num_zerodiv();
            if (bignorm(m) == INT2FIX(1)) return INT2FIX(0);
            return int_pow_tmp3(rb_int_modulo(a, m), b, m, nega_flg);
        }
    }
    UNREACHABLE_RETURN(Qnil);
}

Returns (modular) exponentiation as:

a.pow(b)     
a.pow(b, m)  

Source

static VALUE
rb_int_pred(VALUE num)
{
    if (FIXNUM_P(num)) {
        long i = FIX2LONG(num) - 1;
        return LONG2NUM(i);
    }
    if (RB_BIGNUM_TYPE_P(num)) {
        return rb_big_minus(num, INT2FIX(1));
    }
    return num_funcall1(num, '-', INT2FIX(1));
}

Returns the predecessor of self (equivalent to self - 1):

1.pred  
-1.pred 

Related: Integer#succ (successor value).

Source

static VALUE
integer_rationalize(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 0, 1);
    return integer_to_r(self);
}

Returns the value as a rational. The optional argument eps is always ignored.

Source

static VALUE
int_remainder(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        if (FIXNUM_P(y)) {
            VALUE z = fix_mod(x, y);
            RUBY_ASSERT(FIXNUM_P(z));
            if (z != INT2FIX(0) && (SIGNED_VALUE)(x ^ y) < 0)
                z = fix_minus(z, y);
            return z;
        }
        else if (!RB_BIGNUM_TYPE_P(y)) {
            return num_remainder(x, y);
        }
        x = rb_int2big(FIX2LONG(x));
    }
    else if (!RB_BIGNUM_TYPE_P(x)) {
        return Qnil;
    }
    return rb_big_remainder(x, y);
}

Returns the remainder after dividing self by other.

Examples:

11.remainder(4)              
11.remainder(-4)             
-11.remainder(4)             
-11.remainder(-4)            

12.remainder(4)              
12.remainder(-4)             
-12.remainder(4)             
-12.remainder(-4)            

13.remainder(4.0)            
13.remainder(Rational(4, 1)) 

Source

static VALUE
int_round(int argc, VALUE* argv, VALUE num)
{
    int ndigits;
    int mode;
    VALUE nd, opt;

    if (!rb_scan_args(argc, argv, "01:", &nd, &opt)) return num;
    ndigits = NUM2INT(nd);
    mode = rb_num_get_rounding_option(opt);
    if (ndigits >= 0) {
        return num;
    }
    return rb_int_round(num, ndigits, mode);
}

Returns self rounded to the nearest value with a precision of ndigits decimal digits.

When ndigits is negative, the returned value has at least ndigits.abs trailing zeros:

555.round(-1)      
555.round(-2)      
555.round(-3)      
-555.round(-2)     
555.round(-4)      

Returns self when ndigits is zero or positive.

555.round     
555.round(1)  
555.round(50) 

If keyword argument half is given, and self is equidistant from the two candidate values, the rounding is according to the given half value:

Raises and exception if the value for half is invalid.

Related: Integer#truncate.

Source

def size
  Primitive.attr! :leaf
  Primitive.cexpr! 'rb_int_size(self)'
end

Returns the number of bytes in the machine representation of self; the value is system-dependent:

1.size             
-1.size            
2147483647.size    
(256**10 - 1).size 
(256**20 - 1).size 
(256**40 - 1).size 

Source

VALUE
rb_int_succ(VALUE num)
{
    if (FIXNUM_P(num)) {
        long i = FIX2LONG(num) + 1;
        return LONG2NUM(i);
    }
    if (RB_BIGNUM_TYPE_P(num)) {
        return rb_big_plus(num, INT2FIX(1));
    }
    return num_funcall1(num, '+', INT2FIX(1));
}

Returns the successor integer of self (equivalent to self + 1):

1.succ  
-1.succ 

Related: Integer#pred (predecessor value).

Source

def times
  Primitive.attr! :inline_block
  unless defined?(yield)
    return Primitive.cexpr! 'SIZED_ENUMERATOR(self, 0, 0, int_dotimes_size)'
  end
  i = 0
  while i < self
    yield i
    i = i.succ
  end
  self
end

Calls the given block self times with each integer in (0..self-1):

a = []
5.times {|i| a.push(i) } 
a                        

With no block given, returns an Enumerator.

Source

def to_bn
  OpenSSL::BN::new(self)
end

Casts an Integer as an OpenSSL::BN

See ‘man bn` for more info.

Source

static VALUE
int_to_f(VALUE num)
{
    double val;

    if (FIXNUM_P(num)) {
        val = (double)FIX2LONG(num);
    }
    else if (RB_BIGNUM_TYPE_P(num)) {
        val = rb_big2dbl(num);
    }
    else {
        rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num));
    }

    return DBL2NUM(val);
}

Converts self to a Float:

1.to_f  
-1.to_f 

If the value of self does not fit in a Float, the result is infinity:

(10**400).to_f  
(-10**400).to_f 

Source

Returns self (which is already an Integer).

Source

Returns self (which is already an Integer).

Source

static VALUE
integer_to_r(VALUE self)
{
    return rb_rational_new1(self);
}

Returns the value as a rational.

1.to_r        
(1<<64).to_r  

Source

VALUE
rb_int_to_s(int argc, VALUE *argv, VALUE x)
{
    int base;

    if (rb_check_arity(argc, 0, 1))
        base = NUM2INT(argv[0]);
    else
        base = 10;
    return rb_int2str(x, base);
}

Returns a string containing the place-value representation of self in radix base (in 2..36).

12345.to_s               
12345.to_s(2)            
12345.to_s(8)            
12345.to_s(10)           
12345.to_s(16)           
12345.to_s(36)           
78546939656932.to_s(36)  

Raises an exception if base is out of range.

Source

static VALUE
int_truncate(int argc, VALUE* argv, VALUE num)
{
    int ndigits;

    if (!rb_check_arity(argc, 0, 1)) return num;
    ndigits = NUM2INT(argv[0]);
    if (ndigits >= 0) {
        return num;
    }
    return rb_int_truncate(num, ndigits);
}

Returns self truncated (toward zero) to a precision of ndigits decimal digits.

When ndigits is negative, the returned value has at least ndigits.abs trailing zeros:

555.truncate(-1)  
555.truncate(-2)  
-555.truncate(-2) 

Returns self when ndigits is zero or positive.

555.truncate     
555.truncate(50) 

Related: Integer#round.

Source

static VALUE
int_upto(VALUE from, VALUE to)
{
    RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
    if (FIXNUM_P(from) && FIXNUM_P(to)) {
        long i, end;

        end = FIX2LONG(to);
        for (i = FIX2LONG(from); i <= end; i++) {
            rb_yield(LONG2FIX(i));
        }
    }
    else {
        VALUE i = from, c;

        while (!(c = rb_funcall(i, '>', 1, to))) {
            rb_yield(i);
            i = rb_funcall(i, '+', 1, INT2FIX(1));
        }
        ensure_cmp(c, i, to);
    }
    return from;
}

Calls the given block with each integer value from self up to limit; returns self:

a = []
5.upto(10) {|i| a << i }              
a                                     
a = []
-5.upto(0) {|i| a << i }              
a                                     
5.upto(4) {|i| fail 'Cannot happen' } 

With no block given, returns an Enumerator.

Source

def zero?
  Primitive.attr! :leaf
  Primitive.cexpr! 'rb_int_zero_p(self)'
end

Returns true if self has a zero value, false otherwise.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4