A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.ruby-lang.org/en/3.0/Float.html below:

class Float - RDoc Documentation

class Float

Float objects represent inexact real numbers using the native architecture's double-precision floating point representation.

Floating point has a different arithmetic and is an inexact number. So you should know its esoteric system. See following:

Constants
DIG

The minimum number of significant decimal digits in a double-precision floating point.

Usually defaults to 15.

EPSILON

The difference between 1 and the smallest double-precision floating point number greater than 1.

Usually defaults to 2.2204460492503131e-16.

INFINITY

An expression representing positive infinity.

MANT_DIG

The number of base digits for the double data type.

Usually defaults to 53.

MAX

The largest possible integer in a double-precision floating point number.

Usually defaults to 1.7976931348623157e+308.

MAX_10_EXP

The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.

Usually defaults to 308.

MAX_EXP

The largest possible exponent value in a double-precision floating point.

Usually defaults to 1024.

MIN

The smallest positive normalized number in a double-precision floating point.

Usually defaults to 2.2250738585072014e-308.

If the platform supports denormalized numbers, there are numbers between zero and Float::MIN. 0.0.next_float returns the smallest positive floating point number including denormalized numbers.

MIN_10_EXP

The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.

Usually defaults to -307.

MIN_EXP

The smallest possible exponent value in a double-precision floating point.

Usually defaults to -1021.

NAN

An expression representing a value which is “not a number”.

RADIX

The base of the floating point, or number of unique digits used to represent the number.

Usually defaults to 2 on most systems, which would represent a base-10 decimal.

Public Instance Methods

float % other → float click to toggle source

Returns the modulo after division of float by other.

6543.21.modulo(137)      
6543.21.modulo(137.24)   
static VALUE
flo_mod(VALUE x, VALUE y)
{
    double fy;

    if (RB_TYPE_P(y, T_FIXNUM)) {
        fy = (double)FIX2LONG(y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
        fy = rb_big2dbl(y);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
        fy = RFLOAT_VALUE(y);
    }
    else {
        return rb_num_coerce_bin(x, y, '%');
    }
    return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}

float * other → float click to toggle source

Returns a new Float which is the product of float and other.

VALUE
rb_float_mul(VALUE x, VALUE y)
{
    if (RB_TYPE_P(y, T_FIXNUM)) {
        return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
        return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
        return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
    }
    else {
        return rb_num_coerce_bin(x, y, '*');
    }
}

float ** other → float click to toggle source

Raises float to the power of other.

2.0**3   
VALUE
rb_float_pow(VALUE x, VALUE y)
{
    double dx, dy;
    if (y == INT2FIX(2)) {
        dx = RFLOAT_VALUE(x);
        return DBL2NUM(dx * dx);
    }
    else if (RB_TYPE_P(y, T_FIXNUM)) {
        dx = RFLOAT_VALUE(x);
        dy = (double)FIX2LONG(y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
        dx = RFLOAT_VALUE(x);
        dy = rb_big2dbl(y);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
        dx = RFLOAT_VALUE(x);
        dy = RFLOAT_VALUE(y);
        if (dx < 0 && dy != round(dy))
            return rb_dbl_complex_new_polar_pi(pow(-dx, dy), dy);
    }
    else {
        return rb_num_coerce_bin(x, y, idPow);
    }
    return DBL2NUM(pow(dx, dy));
}

float + other → float click to toggle source

Returns a new Float which is the sum of float and other.

VALUE
rb_float_plus(VALUE x, VALUE y)
{
    if (RB_TYPE_P(y, T_FIXNUM)) {
        return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
        return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
        return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
    }
    else {
        return rb_num_coerce_bin(x, y, '+');
    }
}

float - other → float click to toggle source

Returns a new Float which is the difference of float and other.

VALUE
rb_float_minus(VALUE x, VALUE y)
{
    if (RB_TYPE_P(y, T_FIXNUM)) {
        return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
        return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
        return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
    }
    else {
        return rb_num_coerce_bin(x, y, '-');
    }
}

-float → float click to toggle source

Returns float, negated.

VALUE
rb_float_uminus(VALUE flt)
{
    return DBL2NUM(-RFLOAT_VALUE(flt));
}

float / other → float click to toggle source

Returns a new Float which is the result of dividing float by other.

VALUE
rb_float_div(VALUE x, VALUE y)
{
    double num = RFLOAT_VALUE(x);
    double den;
    double ret;

    if (RB_TYPE_P(y, T_FIXNUM)) {
        den = FIX2LONG(y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
        den = rb_big2dbl(y);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
        den = RFLOAT_VALUE(y);
    }
    else {
        return rb_num_coerce_bin(x, y, '/');
    }

    ret = double_div_double(num, den);
    return DBL2NUM(ret);
}

float < real → true or false click to toggle source

Returns true if float is less than real.

The result of NaN < NaN is undefined, so an implementation-dependent value is returned.

static VALUE
flo_lt(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return -FIX2LONG(rel) < 0 ? Qtrue : Qfalse;
        return Qfalse;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
        b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(b)) return Qfalse;
#endif
    }
    else {
        return rb_num_coerce_relop(x, y, '<');
    }
#if MSC_VERSION_BEFORE(1300)
    if (isnan(a)) return Qfalse;
#endif
    return (a < b)?Qtrue:Qfalse;
}

float <= real → true or false click to toggle source

Returns true if float is less than or equal to real.

The result of NaN <= NaN is undefined, so an implementation-dependent value is returned.

static VALUE
flo_le(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return -FIX2LONG(rel) <= 0 ? Qtrue : Qfalse;
        return Qfalse;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
        b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(b)) return Qfalse;
#endif
    }
    else {
        return rb_num_coerce_relop(x, y, idLE);
    }
#if MSC_VERSION_BEFORE(1300)
    if (isnan(a)) return Qfalse;
#endif
    return (a <= b)?Qtrue:Qfalse;
}

float <=> real → -1, 0, +1, or nil click to toggle source

Returns -1, 0, or +1 depending on whether float is less than, equal to, or greater than real. This is the basis for the tests in the Comparable module.

The result of NaN <=> NaN is undefined, so an implementation-dependent value is returned.

nil is returned if the two values are incomparable.

static VALUE
flo_cmp(VALUE x, VALUE y)
{
    double a, b;
    VALUE i;

    a = RFLOAT_VALUE(x);
    if (isnan(a)) return Qnil;
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return LONG2FIX(-FIX2LONG(rel));
        return rel;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
        b = RFLOAT_VALUE(y);
    }
    else {
        if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
            if (RTEST(i)) {
                int j = rb_cmpint(i, x, y);
                j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
                return INT2FIX(j);
            }
            if (a > 0.0) return INT2FIX(1);
            return INT2FIX(-1);
        }
        return rb_num_coerce_cmp(x, y, id_cmp);
    }
    return rb_dbl_cmp(a, b);
}

float == obj → true or false click to toggle source

Returns true only if obj has the same value as float. Contrast this with Float#eql?, which requires obj to be a Float.

1.0 == 1   

The result of NaN == NaN is undefined, so an implementation-dependent value is returned.

MJIT_FUNC_EXPORTED VALUE
rb_float_equal(VALUE x, VALUE y)
{
    volatile double a, b;

    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        return rb_integer_float_eq(y, x);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
        b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(b)) return Qfalse;
#endif
    }
    else {
        return num_equal(x, y);
    }
    a = RFLOAT_VALUE(x);
#if MSC_VERSION_BEFORE(1300)
    if (isnan(a)) return Qfalse;
#endif
    return (a == b)?Qtrue:Qfalse;
}

Returns true only if obj has the same value as float. Contrast this with Float#eql?, which requires obj to be a Float.

1.0 == 1   

The result of NaN == NaN is undefined, so an implementation-dependent value is returned.

float > real → true or false click to toggle source

Returns true if float is greater than real.

The result of NaN > NaN is undefined, so an implementation-dependent value is returned.

VALUE
rb_float_gt(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return -FIX2LONG(rel) > 0 ? Qtrue : Qfalse;
        return Qfalse;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
        b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(b)) return Qfalse;
#endif
    }
    else {
        return rb_num_coerce_relop(x, y, '>');
    }
#if MSC_VERSION_BEFORE(1300)
    if (isnan(a)) return Qfalse;
#endif
    return (a > b)?Qtrue:Qfalse;
}

float >= real → true or false click to toggle source

Returns true if float is greater than or equal to real.

The result of NaN >= NaN is undefined, so an implementation-dependent value is returned.

static VALUE
flo_ge(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return -FIX2LONG(rel) >= 0 ? Qtrue : Qfalse;
        return Qfalse;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
        b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(b)) return Qfalse;
#endif
    }
    else {
        return rb_num_coerce_relop(x, y, idGE);
    }
#if MSC_VERSION_BEFORE(1300)
    if (isnan(a)) return Qfalse;
#endif
    return (a >= b)?Qtrue:Qfalse;
}

abs → float click to toggle source

Returns the absolute value of float.

(-34.56).abs   
-34.56.abs     
34.56.abs      

Float#magnitude is an alias for Float#abs.

VALUE
rb_float_abs(VALUE flt)
{
    double val = fabs(RFLOAT_VALUE(flt));
    return DBL2NUM(val);
}

angle → 0 or float

Returns 0 if the value is positive, pi otherwise.

arg → 0 or float click to toggle source

Returns 0 if the value is positive, pi otherwise.

static VALUE
float_arg(VALUE self)
{
    if (isnan(RFLOAT_VALUE(self)))
        return self;
    if (f_tpositive_p(self))
        return INT2FIX(0);
    return rb_const_get(rb_mMath, id_PI);
}

ceil([ndigits]) → integer or float click to toggle source

Returns the smallest number greater than or equal to float with a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a floating point number when ndigits is positive, otherwise returns an integer.

1.2.ceil      
2.0.ceil      
(-1.2).ceil   
(-2.0).ceil   

1.234567.ceil(2)   
1.234567.ceil(3)   
1.234567.ceil(4)   
1.234567.ceil(5)   

34567.89.ceil(-5)  
34567.89.ceil(-4)  
34567.89.ceil(-3)  
34567.89.ceil(-2)  
34567.89.ceil(-1)  
34567.89.ceil(0)   
34567.89.ceil(1)   
34567.89.ceil(2)   
34567.89.ceil(3)   

Note that the limited precision of floating point arithmetic might lead to surprising results:

(2.1 / 0.7).ceil  
static VALUE
flo_ceil(int argc, VALUE *argv, VALUE num)
{
    int ndigits = 0;

    if (rb_check_arity(argc, 0, 1)) {
        ndigits = NUM2INT(argv[0]);
    }
    return rb_float_ceil(num, ndigits);
}

coerce(numeric) → array click to toggle source

Returns an array with both numeric and float represented as Float objects.

This is achieved by converting numeric to a Float.

1.2.coerce(3)       
2.5.coerce(1.1)     
static VALUE
flo_coerce(VALUE x, VALUE y)
{
    return rb_assoc_new(rb_Float(y), x);
}

denominator → integer click to toggle source

Returns the denominator (always positive). The result is machine dependent.

See also Float#numerator.

VALUE
rb_float_denominator(VALUE self)
{
    double d = RFLOAT_VALUE(self);
    VALUE r;
    if (isinf(d) || isnan(d))
        return INT2FIX(1);
    r = float_to_r(self);
    return nurat_denominator(r);
}

divmod(numeric) → array click to toggle source

See Numeric#divmod.

42.0.divmod(6)   
42.0.divmod(5)   
static VALUE
flo_divmod(VALUE x, VALUE y)
{
    double fy, div, mod;
    volatile VALUE a, b;

    if (RB_TYPE_P(y, T_FIXNUM)) {
        fy = (double)FIX2LONG(y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
        fy = rb_big2dbl(y);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
        fy = RFLOAT_VALUE(y);
    }
    else {
        return rb_num_coerce_bin(x, y, id_divmod);
    }
    flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
    a = dbl2ival(div);
    b = DBL2NUM(mod);
    return rb_assoc_new(a, b);
}

eql?(obj) → true or false click to toggle source

Returns true only if obj is a Float with the same value as float. Contrast this with Float#==, which performs type conversions.

1.0.eql?(1)   

The result of NaN.eql?(NaN) is undefined, so an implementation-dependent value is returned.

MJIT_FUNC_EXPORTED VALUE
rb_float_eql(VALUE x, VALUE y)
{
    if (RB_TYPE_P(y, T_FLOAT)) {
        double a = RFLOAT_VALUE(x);
        double b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(a) || isnan(b)) return Qfalse;
#endif
        if (a == b)
            return Qtrue;
    }
    return Qfalse;
}

fdiv(numeric) → float

Returns float / numeric, same as Float#/.

finite? → true or false click to toggle source

Returns true if float is a valid IEEE floating point number, i.e. it is not infinite and Float#nan? is false.

VALUE
rb_flo_is_finite_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

#ifdef HAVE_ISFINITE
    if (!isfinite(value))
        return Qfalse;
#else
    if (isinf(value) || isnan(value))
        return Qfalse;
#endif

    return Qtrue;
}

floor([ndigits]) → integer or float click to toggle source

Returns the largest number less than or equal to float with a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a floating point number when ndigits is positive, otherwise returns an integer.

1.2.floor      
2.0.floor      
(-1.2).floor   
(-2.0).floor   

1.234567.floor(2)   
1.234567.floor(3)   
1.234567.floor(4)   
1.234567.floor(5)   

34567.89.floor(-5)  
34567.89.floor(-4)  
34567.89.floor(-3)  
34567.89.floor(-2)  
34567.89.floor(-1)  
34567.89.floor(0)   
34567.89.floor(1)   
34567.89.floor(2)   
34567.89.floor(3)   

Note that the limited precision of floating point arithmetic might lead to surprising results:

(0.3 / 0.1).floor  
static VALUE
flo_floor(int argc, VALUE *argv, VALUE num)
{
    int ndigits = 0;
    if (rb_check_arity(argc, 0, 1)) {
        ndigits = NUM2INT(argv[0]);
    }
    return rb_float_floor(num, ndigits);
}

hash → integer click to toggle source

Returns a hash code for this float.

See also Object#hash.

static VALUE
flo_hash(VALUE num)
{
    return rb_dbl_hash(RFLOAT_VALUE(num));
}

infinite? → -1, 1, or nil click to toggle source

Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or +Infinity.

(0.0).infinite?        
(-1.0/0.0).infinite?   
(+1.0/0.0).infinite?   
VALUE
rb_flo_is_infinite_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

    if (isinf(value)) {
        return INT2FIX( value < 0 ? -1 : 1 );
    }

    return Qnil;
}

Returns a string containing a representation of self. As well as a fixed or exponential form of the float, the call may return NaN, Infinity, and -Infinity.

modulo(other) → float

Returns the modulo after division of float by other.

6543.21.modulo(137)      
6543.21.modulo(137.24)   

nan? → true or false click to toggle source

Returns true if float is an invalid IEEE floating point number.

a = -1.0      
a.nan?        
a = 0.0/0.0   
a.nan?        
static VALUE
flo_is_nan_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

    return isnan(value) ? Qtrue : Qfalse;
}

negative? → true or false click to toggle source

Returns true if float is less than 0.

static VALUE
flo_negative_p(VALUE num)
{
    double f = RFLOAT_VALUE(num);
    return f < 0.0 ? Qtrue : Qfalse;
}

next_float → float click to toggle source

Returns the next representable floating point number.

Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY.

Float::NAN.next_float is Float::NAN.

For example:

0.01.next_float    
1.0.next_float     
100.0.next_float   

0.01.next_float - 0.01     
1.0.next_float - 1.0       
100.0.next_float - 100.0   

f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }





















f = 0.0
100.times { f += 0.1 }
f                           
10-f                        
10.0.next_float-10          
(10-f)/(10.0.next_float-10) 
(10-f)/(10*Float::EPSILON)  
"%a" % 10                   
"%a" % f                    
static VALUE
flo_next_float(VALUE vx)
{
    return flo_nextafter(vx, HUGE_VAL);
}

numerator → integer click to toggle source

Returns the numerator. The result is machine dependent.

n = 0.3.numerator    
d = 0.3.denominator  
n.fdiv(d)            

See also Float#denominator.

VALUE
rb_float_numerator(VALUE self)
{
    double d = RFLOAT_VALUE(self);
    VALUE r;
    if (isinf(d) || isnan(d))
        return self;
    r = float_to_r(self);
    return nurat_numerator(r);
}

phase → 0 or float

Returns 0 if the value is positive, pi otherwise.

positive? → true or false click to toggle source

Returns true if float is greater than 0.

static VALUE
flo_positive_p(VALUE num)
{
    double f = RFLOAT_VALUE(num);
    return f > 0.0 ? Qtrue : Qfalse;
}

prev_float → float click to toggle source

Returns the previous representable floating point number.

(-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.

Float::NAN.prev_float is Float::NAN.

For example:

0.01.prev_float    
1.0.prev_float     
100.0.prev_float   

0.01 - 0.01.prev_float     
1.0 - 1.0.prev_float       
100.0 - 100.0.prev_float   

f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }




















static VALUE
flo_prev_float(VALUE vx)
{
    return flo_nextafter(vx, -HUGE_VAL);
}

quo(numeric) → float click to toggle source

Returns float / numeric, same as Float#/.

static VALUE
flo_quo(VALUE x, VALUE y)
{
    return num_funcall1(x, '/', y);
}

rationalize([eps]) → rational click to toggle source

Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). If the optional argument eps is not given, it will be chosen automatically.

0.3.rationalize          
1.333.rationalize        
1.333.rationalize(0.01)  

See also Float#to_r.

static VALUE
float_rationalize(int argc, VALUE *argv, VALUE self)
{
    double d = RFLOAT_VALUE(self);
    VALUE rat;
    int neg = d < 0.0;
    if (neg) self = DBL2NUM(-d);

    if (rb_check_arity(argc, 0, 1)) {
        rat = rb_flt_rationalize_with_prec(self, argv[0]);
    }
    else {
        rat = rb_flt_rationalize(self);
    }
    if (neg) RATIONAL_SET_NUM(rat, rb_int_uminus(RRATIONAL(rat)->num));
    return rat;
}

round([ndigits] [, half: mode]) → integer or float click to toggle source

Returns float rounded to the nearest value with a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a floating point number when ndigits is positive, otherwise returns an integer.

1.4.round      
1.5.round      
1.6.round      
(-1.5).round   

1.234567.round(2)   
1.234567.round(3)   
1.234567.round(4)   
1.234567.round(5)   

34567.89.round(-5)  
34567.89.round(-4)  
34567.89.round(-3)  
34567.89.round(-2)  
34567.89.round(-1)  
34567.89.round(0)   
34567.89.round(1)   
34567.89.round(2)   
34567.89.round(3)   

If the optional half keyword argument is given, numbers that are half-way between two possible rounded values will be rounded according to the specified tie-breaking mode:

static VALUE
flo_round(int argc, VALUE *argv, VALUE num)
{
    double number, f, x;
    VALUE nd, opt;
    int ndigits = 0;
    enum ruby_num_rounding_mode mode;

    if (rb_scan_args(argc, argv, "01:", &nd, &opt)) {
        ndigits = NUM2INT(nd);
    }
    mode = rb_num_get_rounding_option(opt);
    number = RFLOAT_VALUE(num);
    if (number == 0.0) {
        return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
    }
    if (ndigits < 0) {
        return rb_int_round(flo_to_i(num), ndigits, mode);
    }
    if (ndigits == 0) {
        x = ROUND_CALL(mode, round, (number, 1.0));
        return dbl2ival(x);
    }
    if (isfinite(number)) {
        int binexp;
        frexp(number, &binexp);
        if (float_round_overflow(ndigits, binexp)) return num;
        if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0);
        f = pow(10, ndigits);
        x = ROUND_CALL(mode, round, (number, f));
        return DBL2NUM(x / f);
    }
    return num;
}

to_d → bigdecimal click to toggle source

to_d(precision) → bigdecimal

Returns the value of float as a BigDecimal. The precision parameter is used to determine the number of significant digits for the result (the default is Float::DIG).

require 'bigdecimal'
require 'bigdecimal/util'

0.5.to_d         
1.234.to_d(2)    

See also BigDecimal::new.

def to_d(precision=Float::DIG+1)
  BigDecimal(self, precision)
end

to_f → self click to toggle source

Since float is already a Float, returns self.

static VALUE
flo_to_f(VALUE num)
{
    return num;
}

to_i → integer click to toggle source

Returns the float truncated to an Integer.

1.2.to_i      
(-1.2).to_i   

Note that the limited precision of floating point arithmetic might lead to surprising results:

(0.3 / 0.1).to_i  

to_int is an alias for to_i.

static VALUE
flo_to_i(VALUE num)
{
    double f = RFLOAT_VALUE(num);

    if (f > 0.0) f = floor(f);
    if (f < 0.0) f = ceil(f);

    return dbl2ival(f);
}

Returns the float truncated to an Integer.

1.2.to_i      
(-1.2).to_i   

Note that the limited precision of floating point arithmetic might lead to surprising results:

(0.3 / 0.1).to_i  

to_int is an alias for to_i.

to_r → rational click to toggle source

Returns the value as a rational.

2.0.to_r    
2.5.to_r    
-0.75.to_r  
0.0.to_r    
0.3.to_r    

NOTE: 0.3.to_r isn't the same as “0.3”.to_r. The latter is equivalent to “3/10”.to_r, but the former isn't so.

0.3.to_r   == 3/10r  
"0.3".to_r == 3/10r  

See also Float#rationalize.

static VALUE
float_to_r(VALUE self)
{
    VALUE f;
    int n;

    float_decode_internal(self, &f, &n);
#if FLT_RADIX == 2
    if (n == 0)
        return rb_rational_new1(f);
    if (n > 0)
        return rb_rational_new1(rb_int_lshift(f, INT2FIX(n)));
    n = -n;
    return rb_rational_new2(f, rb_int_lshift(ONE, INT2FIX(n)));
#else
    f = rb_int_mul(f, rb_int_pow(INT2FIX(FLT_RADIX), n));
    if (RB_TYPE_P(f, T_RATIONAL))
        return f;
    return rb_rational_new1(f);
#endif
}

to_s → string click to toggle source

Returns a string containing a representation of self. As well as a fixed or exponential form of the float, the call may return NaN, Infinity, and -Infinity.

static VALUE
flo_to_s(VALUE flt)
{
    enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
    enum {float_dig = DBL_DIG+1};
    char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
    double value = RFLOAT_VALUE(flt);
    VALUE s;
    char *p, *e;
    int sign, decpt, digs;

    if (isinf(value)) {
        static const char minf[] = "-Infinity";
        const int pos = (value > 0); /* skip "-" */
        return rb_usascii_str_new(minf+pos, strlen(minf)-pos);
    }
    else if (isnan(value))
        return rb_usascii_str_new2("NaN");

    p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
    s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
    if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
    memcpy(buf, p, digs);
    xfree(p);
    if (decpt > 0) {
        if (decpt < digs) {
            memmove(buf + decpt + 1, buf + decpt, digs - decpt);
            buf[decpt] = '.';
            rb_str_cat(s, buf, digs + 1);
        }
        else if (decpt <= DBL_DIG) {
            long len;
            char *ptr;
            rb_str_cat(s, buf, digs);
            rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
            ptr = RSTRING_PTR(s) + len;
            if (decpt > digs) {
                memset(ptr, '0', decpt - digs);
                ptr += decpt - digs;
            }
            memcpy(ptr, ".0", 2);
        }
        else {
            goto exp;
        }
    }
    else if (decpt > -4) {
        long len;
        char *ptr;
        rb_str_cat(s, "0.", 2);
        rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
        ptr = RSTRING_PTR(s);
        memset(ptr += len, '0', -decpt);
        memcpy(ptr -= decpt, buf, digs);
    }
    else {
        goto exp;
    }
    return s;

  exp:
    if (digs > 1) {
        memmove(buf + 2, buf + 1, digs - 1);
    }
    else {
        buf[2] = '0';
        digs++;
    }
    buf[1] = '.';
    rb_str_cat(s, buf, digs + 1);
    rb_str_catf(s, "e%+03d", decpt - 1);
    return s;
}

truncate([ndigits]) → integer or float click to toggle source

Returns float truncated (toward zero) to a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a floating point number when ndigits is positive, otherwise returns an integer.

2.8.truncate           
(-2.8).truncate        
1.234567.truncate(2)   
34567.89.truncate(-2)  

Note that the limited precision of floating point arithmetic might lead to surprising results:

(0.3 / 0.1).truncate  
static VALUE
flo_truncate(int argc, VALUE *argv, VALUE num)
{
    if (signbit(RFLOAT_VALUE(num)))
        return flo_ceil(argc, argv, num);
    else
        return flo_floor(argc, argv, num);
}

zero? → true or false click to toggle source

Returns true if float is 0.0.

static VALUE
flo_zero_p(VALUE num)
{
    return flo_iszero(num) ? Qtrue : Qfalse;
}

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4