pub trait Float:
Num
+ Copy
+ NumCast
+ PartialOrd
+ Neg<Output = Self> {
Show 60 methods // Required methods
fn nan() -> Self;
fn infinity() -> Self;
fn neg_infinity() -> Self;
fn neg_zero() -> Self;
fn min_value() -> Self;
fn min_positive_value() -> Self;
fn max_value() -> Self;
fn is_nan(self) -> bool;
fn is_infinite(self) -> bool;
fn is_finite(self) -> bool;
fn is_normal(self) -> bool;
fn classify(self) -> FpCategory;
fn floor(self) -> Self;
fn ceil(self) -> Self;
fn round(self) -> Self;
fn trunc(self) -> Self;
fn fract(self) -> Self;
fn abs(self) -> Self;
fn signum(self) -> Self;
fn is_sign_positive(self) -> bool;
fn is_sign_negative(self) -> bool;
fn mul_add(self, a: Self, b: Self) -> Self;
fn recip(self) -> Self;
fn powi(self, n: i32) -> Self;
fn powf(self, n: Self) -> Self;
fn sqrt(self) -> Self;
fn exp(self) -> Self;
fn exp2(self) -> Self;
fn ln(self) -> Self;
fn log(self, base: Self) -> Self;
fn log2(self) -> Self;
fn log10(self) -> Self;
fn max(self, other: Self) -> Self;
fn min(self, other: Self) -> Self;
fn abs_sub(self, other: Self) -> Self;
fn cbrt(self) -> Self;
fn hypot(self, other: Self) -> Self;
fn sin(self) -> Self;
fn cos(self) -> Self;
fn tan(self) -> Self;
fn asin(self) -> Self;
fn acos(self) -> Self;
fn atan(self) -> Self;
fn atan2(self, other: Self) -> Self;
fn sin_cos(self) -> (Self, Self);
fn exp_m1(self) -> Self;
fn ln_1p(self) -> Self;
fn sinh(self) -> Self;
fn cosh(self) -> Self;
fn tanh(self) -> Self;
fn asinh(self) -> Self;
fn acosh(self) -> Self;
fn atanh(self) -> Self;
fn integer_decode(self) -> (u64, i16, i8);
// Provided methods
fn epsilon() -> Self { ... }
fn is_subnormal(self) -> bool { ... }
fn to_degrees(self) -> Self { ... }
fn to_radians(self) -> Self { ... }
fn clamp(self, min: Self, max: Self) -> Self { ... }
fn copysign(self, sign: Self) -> Self { ... }
}
Expand description
Generic trait for floating point numbers
This trait is only available with the std
feature, or with the libm
feature otherwise.
Returns the NaN
value.
use num_traits::Float;
let nan: f32 = Float::nan();
assert!(nan.is_nan());
Source
Returns the infinite value.
use num_traits::Float;
use std::f32;
let infinity: f32 = Float::infinity();
assert!(infinity.is_infinite());
assert!(!infinity.is_finite());
assert!(infinity > f32::MAX);
Source
Returns the negative infinite value.
use num_traits::Float;
use std::f32;
let neg_infinity: f32 = Float::neg_infinity();
assert!(neg_infinity.is_infinite());
assert!(!neg_infinity.is_finite());
assert!(neg_infinity < f32::MIN);
Source
Returns -0.0
.
use num_traits::{Zero, Float};
let inf: f32 = Float::infinity();
let zero: f32 = Zero::zero();
let neg_zero: f32 = Float::neg_zero();
assert_eq!(zero, neg_zero);
assert_eq!(7.0f32/inf, zero);
assert_eq!(zero * 10.0, zero);
Source
Returns the smallest finite value that this type can represent.
use num_traits::Float;
use std::f64;
let x: f64 = Float::min_value();
assert_eq!(x, f64::MIN);
Source
Returns the smallest positive, normalized value that this type can represent.
use num_traits::Float;
use std::f64;
let x: f64 = Float::min_positive_value();
assert_eq!(x, f64::MIN_POSITIVE);
Source
Returns the largest finite value that this type can represent.
use num_traits::Float;
use std::f64;
let x: f64 = Float::max_value();
assert_eq!(x, f64::MAX);
Source
Returns true
if this value is NaN
and false otherwise.
use num_traits::Float;
use std::f64;
let nan = f64::NAN;
let f = 7.0;
assert!(nan.is_nan());
assert!(!f.is_nan());
Source
Returns true
if this value is positive infinity or negative infinity and false otherwise.
use num_traits::Float;
use std::f32;
let f = 7.0f32;
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let nan: f32 = f32::NAN;
assert!(!f.is_infinite());
assert!(!nan.is_infinite());
assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());
Source
Returns true
if this number is neither infinite nor NaN
.
use num_traits::Float;
use std::f32;
let f = 7.0f32;
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let nan: f32 = f32::NAN;
assert!(f.is_finite());
assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());
Source
Returns true
if the number is neither zero, infinite, subnormal, or NaN
.
use num_traits::Float;
use std::f32;
let min = f32::MIN_POSITIVE; let max = f32::MAX;
let lower_than_min = 1.0e-40_f32;
let zero = 0.0f32;
assert!(min.is_normal());
assert!(max.is_normal());
assert!(!zero.is_normal());
assert!(!f32::NAN.is_normal());
assert!(!f32::INFINITY.is_normal());
assert!(!lower_than_min.is_normal());
Source
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
use num_traits::Float;
use std::num::FpCategory;
use std::f32;
let num = 12.4f32;
let inf = f32::INFINITY;
assert_eq!(num.classify(), FpCategory::Normal);
assert_eq!(inf.classify(), FpCategory::Infinite);
Source
Returns the largest integer less than or equal to a number.
use num_traits::Float;
let f = 3.99;
let g = 3.0;
assert_eq!(f.floor(), 3.0);
assert_eq!(g.floor(), 3.0);
Source
Returns the smallest integer greater than or equal to a number.
use num_traits::Float;
let f = 3.01;
let g = 4.0;
assert_eq!(f.ceil(), 4.0);
assert_eq!(g.ceil(), 4.0);
Source
Returns the nearest integer to a number. Round half-way cases away from 0.0
.
use num_traits::Float;
let f = 3.3;
let g = -3.3;
assert_eq!(f.round(), 3.0);
assert_eq!(g.round(), -3.0);
Source
Return the integer part of a number.
use num_traits::Float;
let f = 3.3;
let g = -3.7;
assert_eq!(f.trunc(), 3.0);
assert_eq!(g.trunc(), -3.0);
Source
Returns the fractional part of a number.
use num_traits::Float;
let x = 3.5;
let y = -3.5;
let abs_difference_x = (x.fract() - 0.5).abs();
let abs_difference_y = (y.fract() - (-0.5)).abs();
assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);
Source
Computes the absolute value of self
. Returns Float::nan()
if the number is Float::nan()
.
use num_traits::Float;
use std::f64;
let x = 3.5;
let y = -3.5;
let abs_difference_x = (x.abs() - x).abs();
let abs_difference_y = (y.abs() - (-y)).abs();
assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);
assert!(f64::NAN.abs().is_nan());
Source
Returns a number that represents the sign of self
.
1.0
if the number is positive, +0.0
or Float::infinity()
-1.0
if the number is negative, -0.0
or Float::neg_infinity()
Float::nan()
if the number is Float::nan()
use num_traits::Float;
use std::f64;
let f = 3.5;
assert_eq!(f.signum(), 1.0);
assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
assert!(f64::NAN.signum().is_nan());
Source
Returns true
if self
is positive, including +0.0
, Float::infinity()
, and Float::nan()
.
use num_traits::Float;
use std::f64;
let nan: f64 = f64::NAN;
let neg_nan: f64 = -f64::NAN;
let f = 7.0;
let g = -7.0;
assert!(f.is_sign_positive());
assert!(!g.is_sign_positive());
assert!(nan.is_sign_positive());
assert!(!neg_nan.is_sign_positive());
Source
Returns true
if self
is negative, including -0.0
, Float::neg_infinity()
, and -Float::nan()
.
use num_traits::Float;
use std::f64;
let nan: f64 = f64::NAN;
let neg_nan: f64 = -f64::NAN;
let f = 7.0;
let g = -7.0;
assert!(!f.is_sign_negative());
assert!(g.is_sign_negative());
assert!(!nan.is_sign_negative());
assert!(neg_nan.is_sign_negative());
Source
Fused multiply-add. Computes (self * a) + b
with only one rounding error, yielding a more accurate result than an unfused multiply-add.
Using mul_add
can be more performant than an unfused multiply-add if the target architecture has a dedicated fma
CPU instruction.
use num_traits::Float;
let m = 10.0;
let x = 4.0;
let b = 60.0;
let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
assert!(abs_difference < 1e-10);
Source
Take the reciprocal (inverse) of a number, 1/x
.
use num_traits::Float;
let x = 2.0;
let abs_difference = (x.recip() - (1.0/x)).abs();
assert!(abs_difference < 1e-10);
Source
Raise a number to an integer power.
Using this function is generally faster than using powf
use num_traits::Float;
let x = 2.0;
let abs_difference = (x.powi(2) - x*x).abs();
assert!(abs_difference < 1e-10);
Source
Raise a number to a floating point power.
use num_traits::Float;
let x = 2.0;
let abs_difference = (x.powf(2.0) - x*x).abs();
assert!(abs_difference < 1e-10);
Source
Take the square root of a number.
Returns NaN if self
is a negative number.
use num_traits::Float;
let positive = 4.0;
let negative = -4.0;
let abs_difference = (positive.sqrt() - 2.0).abs();
assert!(abs_difference < 1e-10);
assert!(negative.sqrt().is_nan());
Source
Returns e^(self)
, (the exponential function).
use num_traits::Float;
let one = 1.0;
let e = one.exp();
let abs_difference = (e.ln() - 1.0).abs();
assert!(abs_difference < 1e-10);
Source
Returns 2^(self)
.
use num_traits::Float;
let f = 2.0;
let abs_difference = (f.exp2() - 4.0).abs();
assert!(abs_difference < 1e-10);
Source
Returns the natural logarithm of the number.
use num_traits::Float;
let one = 1.0;
let e = one.exp();
let abs_difference = (e.ln() - 1.0).abs();
assert!(abs_difference < 1e-10);
Source
Returns the logarithm of the number with respect to an arbitrary base.
use num_traits::Float;
let ten = 10.0;
let two = 2.0;
let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
let abs_difference_2 = (two.log(2.0) - 1.0).abs();
assert!(abs_difference_10 < 1e-10);
assert!(abs_difference_2 < 1e-10);
Source
Returns the base 2 logarithm of the number.
use num_traits::Float;
let two = 2.0;
let abs_difference = (two.log2() - 1.0).abs();
assert!(abs_difference < 1e-10);
Source
Returns the base 10 logarithm of the number.
use num_traits::Float;
let ten = 10.0;
let abs_difference = (ten.log10() - 1.0).abs();
assert!(abs_difference < 1e-10);
Source
Returns the maximum of the two numbers.
use num_traits::Float;
let x = 1.0;
let y = 2.0;
assert_eq!(x.max(y), y);
Source
Returns the minimum of the two numbers.
use num_traits::Float;
let x = 1.0;
let y = 2.0;
assert_eq!(x.min(y), x);
Source
The positive difference of two numbers.
self <= other
: 0:0
self - other
use num_traits::Float;
let x = 3.0;
let y = -3.0;
let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);
Source
Take the cubic root of a number.
use num_traits::Float;
let x = 8.0;
let abs_difference = (x.cbrt() - 2.0).abs();
assert!(abs_difference < 1e-10);
Source
Calculate the length of the hypotenuse of a right-angle triangle given legs of length x
and y
.
use num_traits::Float;
let x = 2.0;
let y = 3.0;
let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
assert!(abs_difference < 1e-10);
Source
Computes the sine of a number (in radians).
use num_traits::Float;
use std::f64;
let x = f64::consts::PI/2.0;
let abs_difference = (x.sin() - 1.0).abs();
assert!(abs_difference < 1e-10);
Source
Computes the cosine of a number (in radians).
use num_traits::Float;
use std::f64;
let x = 2.0*f64::consts::PI;
let abs_difference = (x.cos() - 1.0).abs();
assert!(abs_difference < 1e-10);
Source
Computes the tangent of a number (in radians).
use num_traits::Float;
use std::f64;
let x = f64::consts::PI/4.0;
let abs_difference = (x.tan() - 1.0).abs();
assert!(abs_difference < 1e-14);
Source
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
use num_traits::Float;
use std::f64;
let f = f64::consts::PI / 2.0;
let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
assert!(abs_difference < 1e-10);
Source
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
use num_traits::Float;
use std::f64;
let f = f64::consts::PI / 4.0;
let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
assert!(abs_difference < 1e-10);
Source
Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
use num_traits::Float;
let f = 1.0;
let abs_difference = (f.tan().atan() - 1.0).abs();
assert!(abs_difference < 1e-10);
Source
Computes the four quadrant arctangent of self
(y
) and other
(x
).
x = 0
, y = 0
: 0
x >= 0
: arctan(y/x)
-> [-pi/2, pi/2]
y >= 0
: arctan(y/x) + pi
-> (pi/2, pi]
y < 0
: arctan(y/x) - pi
-> (-pi, -pi/2)
use num_traits::Float;
use std::f64;
let pi = f64::consts::PI;
let x1 = 3.0;
let y1 = -3.0;
let x2 = -3.0;
let y2 = 3.0;
let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
assert!(abs_difference_1 < 1e-10);
assert!(abs_difference_2 < 1e-10);
Source
Simultaneously computes the sine and cosine of the number, x
. Returns (sin(x), cos(x))
.
use num_traits::Float;
use std::f64;
let x = f64::consts::PI/4.0;
let f = x.sin_cos();
let abs_difference_0 = (f.0 - x.sin()).abs();
let abs_difference_1 = (f.1 - x.cos()).abs();
assert!(abs_difference_0 < 1e-10);
assert!(abs_difference_0 < 1e-10);
Source
Returns e^(self) - 1
in a way that is accurate even if the number is close to zero.
use num_traits::Float;
let x = 7.0;
let abs_difference = (x.ln().exp_m1() - 6.0).abs();
assert!(abs_difference < 1e-10);
Source
Returns ln(1+n)
(natural logarithm) more accurately than if the operations were performed separately.
use num_traits::Float;
use std::f64;
let x = f64::consts::E - 1.0;
let abs_difference = (x.ln_1p() - 1.0).abs();
assert!(abs_difference < 1e-10);
Source
Hyperbolic sine function.
use num_traits::Float;
use std::f64;
let e = f64::consts::E;
let x = 1.0;
let f = x.sinh();
let g = (e*e - 1.0)/(2.0*e);
let abs_difference = (f - g).abs();
assert!(abs_difference < 1e-10);
Source
Hyperbolic cosine function.
use num_traits::Float;
use std::f64;
let e = f64::consts::E;
let x = 1.0;
let f = x.cosh();
let g = (e*e + 1.0)/(2.0*e);
let abs_difference = (f - g).abs();
assert!(abs_difference < 1.0e-10);
Source
Hyperbolic tangent function.
use num_traits::Float;
use std::f64;
let e = f64::consts::E;
let x = 1.0;
let f = x.tanh();
let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
let abs_difference = (f - g).abs();
assert!(abs_difference < 1.0e-10);
Source
Inverse hyperbolic sine function.
use num_traits::Float;
let x = 1.0;
let f = x.sinh().asinh();
let abs_difference = (f - x).abs();
assert!(abs_difference < 1.0e-10);
Source
Inverse hyperbolic cosine function.
use num_traits::Float;
let x = 1.0;
let f = x.cosh().acosh();
let abs_difference = (f - x).abs();
assert!(abs_difference < 1.0e-10);
Source
Inverse hyperbolic tangent function.
use num_traits::Float;
use std::f64;
let e = f64::consts::E;
let f = e.tanh().atanh();
let abs_difference = (f - e).abs();
assert!(abs_difference < 1.0e-10);
Source
Returns the mantissa, base 2 exponent, and sign as integers, respectively. The original number can be recovered by sign * mantissa * 2 ^ exponent
.
use num_traits::Float;
let num = 2.0f32;
let (mantissa, exponent, sign) = Float::integer_decode(num);
let sign_f = sign as f32;
let mantissa_f = mantissa as f32;
let exponent_f = num.powf(exponent as f32);
let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();
assert!(abs_difference < 1e-10);
Source
Returns epsilon, a small positive value.
use num_traits::Float;
use std::f64;
let x: f64 = Float::epsilon();
assert_eq!(x, f64::EPSILON);
§Panics
The default implementation will panic if f32::EPSILON
cannot be cast to Self
.
Returns true
if the number is subnormal.
use num_traits::Float;
use std::f64;
let min = f64::MIN_POSITIVE; let max = f64::MAX;
let lower_than_min = 1.0e-308_f64;
let zero = 0.0_f64;
assert!(!min.is_subnormal());
assert!(!max.is_subnormal());
assert!(!zero.is_subnormal());
assert!(!f64::NAN.is_subnormal());
assert!(!f64::INFINITY.is_subnormal());
assert!(lower_than_min.is_subnormal());
Source
Converts radians to degrees.
use std::f64::consts;
let angle = consts::PI;
let abs_difference = (angle.to_degrees() - 180.0).abs();
assert!(abs_difference < 1e-10);
Source
Converts degrees to radians.
use std::f64::consts;
let angle = 180.0_f64;
let abs_difference = (angle.to_radians() - consts::PI).abs();
assert!(abs_difference < 1e-10);
Source
Clamps a value between a min and max.
Panics in debug mode if !(min <= max)
.
use num_traits::Float;
let x = 1.0;
let y = 2.0;
let z = 3.0;
assert_eq!(x.clamp(y, z), 2.0);
Source
Returns a number composed of the magnitude of self
and the sign of sign
.
Equal to self
if the sign of self
and sign
are the same, otherwise equal to -self
. If self
is a NAN
, then a NAN
with the sign of sign
is returned.
use num_traits::Float;
let f = 3.5_f32;
assert_eq!(f.copysign(0.42), 3.5_f32);
assert_eq!(f.copysign(-0.42), -3.5_f32);
assert_eq!((-f).copysign(0.42), 3.5_f32);
assert_eq!((-f).copysign(-0.42), -3.5_f32);
assert!(f32::nan().copysign(1.0).is_nan());
This trait is not dyn compatible.
In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.
Source§ Source§RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4