A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.pytorch.org/docs/stable/special.html below:

torch.special — PyTorch 2.8 documentation

Functions#
torch.special.airy_ai(input, *, out=None) Tensor#

Airy function Ai ( input ) \text{Ai}\left(\text{input}\right) Ai(input).

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.bessel_j0(input, *, out=None) Tensor#

Bessel function of the first kind of order 0 0 0.

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.bessel_j1(input, *, out=None) Tensor#

Bessel function of the first kind of order 1 1 1.

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.bessel_y0(input, *, out=None) Tensor#

Bessel function of the second kind of order 0 0 0.

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.bessel_y1(input, *, out=None) Tensor#

Bessel function of the second kind of order 1 1 1.

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.chebyshev_polynomial_t(input, n, *, out=None) Tensor#

Chebyshev polynomial of the first kind T n ( input ) T_{n}(\text{input}) Tn(input).

If n = 0 n = 0 n=0, 1 1 1 is returned. If n = 1 n = 1 n=1, input \text{input} input is returned. If n < 6 n < 6 n<6 or ∣ input ∣ > 1 |\text{input}| > 1 input>1 the recursion:

T n + 1 ( input ) = 2 × input × T n ( input ) − T n − 1 ( input ) T_{n + 1}(\text{input}) = 2 \times \text{input} \times T_{n}(\text{input}) - T_{n - 1}(\text{input}) Tn+1(input)=2×input×Tn(input)Tn1(input)

is evaluated. Otherwise, the explicit trigonometric formula:

T n ( input ) = cos ( n × arccos ( x ) ) T_{n}(\text{input}) = \text{cos}(n \times \text{arccos}(x)) Tn(input)=cos(n×arccos(x))

is evaluated.

Parameters
  • input (Tensor) – the input tensor.

  • n (Tensor) – Degree of the polynomial.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.chebyshev_polynomial_u(input, n, *, out=None) Tensor#

Chebyshev polynomial of the second kind U n ( input ) U_{n}(\text{input}) Un(input).

If n = 0 n = 0 n=0, 1 1 1 is returned. If n = 1 n = 1 n=1, 2 × input 2 \times \text{input} 2×input is returned. If n < 6 n < 6 n<6 or ∣ input ∣ > 1 |\text{input}| > 1 input>1, the recursion:

U n + 1 ( input ) = 2 × input × U n ( input ) − U n − 1 ( input ) U_{n + 1}(\text{input}) = 2 \times \text{input} \times U_{n}(\text{input}) - U_{n - 1}(\text{input}) Un+1(input)=2×input×Un(input)Un1(input)

is evaluated. Otherwise, the explicit trigonometric formula:

sin ( ( n + 1 ) × arccos ( input ) ) sin ( arccos ( input ) ) \frac{\text{sin}((n + 1) \times \text{arccos}(\text{input}))}{\text{sin}(\text{arccos}(\text{input}))} sin(arccos(input))sin((n+1)×arccos(input))

is evaluated.

Parameters
  • input (Tensor) – the input tensor.

  • n (Tensor) – Degree of the polynomial.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.chebyshev_polynomial_v(input, n, *, out=None) Tensor#

Chebyshev polynomial of the third kind V n ∗ ( input ) V_{n}^{\ast}(\text{input}) Vn(input).

Parameters
  • input (Tensor) – the input tensor.

  • n (Tensor) – Degree of the polynomial.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.chebyshev_polynomial_w(input, n, *, out=None) Tensor#

Chebyshev polynomial of the fourth kind W n ∗ ( input ) W_{n}^{\ast}(\text{input}) Wn(input).

Parameters
  • input (Tensor) – the input tensor.

  • n (Tensor) – Degree of the polynomial.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.digamma(input, *, out=None) Tensor#

Computes the logarithmic derivative of the gamma function on input.

ϝ ( x ) = d d x ln ⁡ ( Γ ( x ) ) = Γ′ ( x ) Γ ( x ) \digamma(x) = \frac{d}{dx} \ln\left(\Gamma\left(x\right)\right) = \frac{\Gamma'(x)}{\Gamma(x)} ϝ(x)=dxdln(Γ(x))=Γ(x)Γ(x)

Parameters

input (Tensor) – the tensor to compute the digamma function on

Keyword Arguments

out (Tensor, optional) – the output tensor.

Note

This function is similar to SciPy’s scipy.special.digamma.

Note

From PyTorch 1.8 onwards, the digamma function returns -Inf for 0. Previously it returned NaN for 0.

Example:

>>> a = torch.tensor([1, 0.5])
>>> torch.special.digamma(a)
tensor([-0.5772, -1.9635])
torch.special.entr(input, *, out=None) Tensor#

Computes the entropy on input (as defined below), elementwise.

entr(x) = { − x ∗ ln ⁡ ( x ) x > 0 0 x = 0.0 − ∞ x < 0 \begin{align} \text{entr(x)} = \begin{cases} -x * \ln(x) & x > 0 \\ 0 & x = 0.0 \\ -\infty & x < 0 \end{cases} \end{align} entr(x)= xln(x)0x>0x=0.0x<0

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> a = torch.arange(-0.5, 1, 0.5)
>>> a
tensor([-0.5000,  0.0000,  0.5000])
>>> torch.special.entr(a)
tensor([  -inf, 0.0000, 0.3466])
torch.special.erf(input, *, out=None) Tensor#

Computes the error function of input. The error function is defined as follows:

e r f ( x ) = 2 π ∫ 0 x e − t2 d t \mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt erf(x)=π 20xet2dt

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> torch.special.erf(torch.tensor([0, -1., 10.]))
tensor([ 0.0000, -0.8427,  1.0000])
torch.special.erfc(input, *, out=None) Tensor#

Computes the complementary error function of input. The complementary error function is defined as follows:

e r f c ( x ) = 1 − 2 π ∫ 0 x e − t2 d t \mathrm{erfc}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt erfc(x)=1π 20xet2dt

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> torch.special.erfc(torch.tensor([0, -1., 10.]))
tensor([ 1.0000, 1.8427,  0.0000])
torch.special.erfcx(input, *, out=None) Tensor#

Computes the scaled complementary error function for each element of input. The scaled complementary error function is defined as follows:

e r f c x ( x ) = ex2 e r f c ( x ) \mathrm{erfcx}(x) = e^{x^2} \mathrm{erfc}(x) erfcx(x)=ex2erfc(x)

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> torch.special.erfcx(torch.tensor([0, -1., 10.]))
tensor([ 1.0000, 5.0090, 0.0561])
torch.special.erfinv(input, *, out=None) Tensor#

Computes the inverse error function of input. The inverse error function is defined in the range ( − 1 , 1 ) (-1, 1) (1,1) as:

e r f i n v ( e r f ( x ) ) = x \mathrm{erfinv}(\mathrm{erf}(x)) = x erfinv(erf(x))=x

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> torch.special.erfinv(torch.tensor([0, 0.5, -1.]))
tensor([ 0.0000,  0.4769,    -inf])
torch.special.exp2(input, *, out=None) Tensor#

Computes the base two exponential function of input.

y i = 2 x i y_{i} = 2^{x_{i}} yi=2xi

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> torch.special.exp2(torch.tensor([0, math.log2(2.), 3, 4]))
tensor([ 1.,  2.,  8., 16.])
torch.special.expit(input, *, out=None) Tensor#

Computes the expit (also known as the logistic sigmoid function) of the elements of input.

out i = 1 1 + e − input i \text{out}_{i} = \frac{1}{1 + e^{-\text{input}_{i}}} outi=1+einputi1

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> t = torch.randn(4)
>>> t
tensor([ 0.9213,  1.0887, -0.8858, -1.7683])
>>> torch.special.expit(t)
tensor([ 0.7153,  0.7481,  0.2920,  0.1458])
torch.special.expm1(input, *, out=None) Tensor#

Computes the exponential of the elements minus 1 of input.

y i = e x i − 1 y_{i} = e^{x_{i}} - 1 yi=exi1

Note

This function provides greater precision than exp(x) - 1 for small values of x.

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> torch.special.expm1(torch.tensor([0, math.log(2.)]))
tensor([ 0.,  1.])
torch.special.gammainc(input, other, *, out=None) Tensor#

Computes the regularized lower incomplete gamma function:

out i = 1 Γ ( input i ) ∫ 0 other i t input i − 1 e − t d t \text{out}_{i} = \frac{1}{\Gamma(\text{input}_i)} \int_0^{\text{other}_i} t^{\text{input}_i-1} e^{-t} dt outi=Γ(inputi)10otheritinputi1etdt

where both input i \text{input}_i inputi and other i \text{other}_i otheri are weakly positive and at least one is strictly positive. If both are zero or either is negative then out i = nan \text{out}_i=\text{nan} outi=nan. Γ ( ⋅ ) \Gamma(\cdot) Γ() in the equation above is the gamma function,

Γ ( input i ) = ∫ 0 ∞ t ( input i − 1 ) e − t d t . \Gamma(\text{input}_i) = \int_0^\infty t^{(\text{input}_i-1)} e^{-t} dt. Γ(inputi)=0t(inputi1)etdt.

See torch.special.gammaincc() and torch.special.gammaln() for related functions.

Supports broadcasting to a common shape and float inputs.

Note

The backward pass with respect to input is not yet supported. Please open an issue on PyTorch’s Github to request it.

Parameters
  • input (Tensor) – the first non-negative input tensor

  • other (Tensor) – the second non-negative input tensor

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> a1 = torch.tensor([4.0])
>>> a2 = torch.tensor([3.0, 4.0, 5.0])
>>> a = torch.special.gammaincc(a1, a2)
tensor([0.3528, 0.5665, 0.7350])
tensor([0.3528, 0.5665, 0.7350])
>>> b = torch.special.gammainc(a1, a2) + torch.special.gammaincc(a1, a2)
tensor([1., 1., 1.])
torch.special.gammaincc(input, other, *, out=None) Tensor#

Computes the regularized upper incomplete gamma function:

out i = 1 Γ ( input i ) ∫ other i ∞ t input i − 1 e − t d t \text{out}_{i} = \frac{1}{\Gamma(\text{input}_i)} \int_{\text{other}_i}^{\infty} t^{\text{input}_i-1} e^{-t} dt outi=Γ(inputi)1otheritinputi1etdt

where both input i \text{input}_i inputi and other i \text{other}_i otheri are weakly positive and at least one is strictly positive. If both are zero or either is negative then out i = nan \text{out}_i=\text{nan} outi=nan. Γ ( ⋅ ) \Gamma(\cdot) Γ() in the equation above is the gamma function,

Γ ( input i ) = ∫ 0 ∞ t ( input i − 1 ) e − t d t . \Gamma(\text{input}_i) = \int_0^\infty t^{(\text{input}_i-1)} e^{-t} dt. Γ(inputi)=0t(inputi1)etdt.

See torch.special.gammainc() and torch.special.gammaln() for related functions.

Supports broadcasting to a common shape and float inputs.

Note

The backward pass with respect to input is not yet supported. Please open an issue on PyTorch’s Github to request it.

Parameters
  • input (Tensor) – the first non-negative input tensor

  • other (Tensor) – the second non-negative input tensor

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> a1 = torch.tensor([4.0])
>>> a2 = torch.tensor([3.0, 4.0, 5.0])
>>> a = torch.special.gammaincc(a1, a2)
tensor([0.6472, 0.4335, 0.2650])
>>> b = torch.special.gammainc(a1, a2) + torch.special.gammaincc(a1, a2)
tensor([1., 1., 1.])
torch.special.gammaln(input, *, out=None) Tensor#

Computes the natural logarithm of the absolute value of the gamma function on input.

out i = ln ⁡ Γ ( ∣ input i ∣ ) \text{out}_{i} = \ln \Gamma(|\text{input}_{i}|) outi=lnΓ(inputi)

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> a = torch.arange(0.5, 2, 0.5)
>>> torch.special.gammaln(a)
tensor([ 0.5724,  0.0000, -0.1208])
torch.special.hermite_polynomial_h(input, n, *, out=None) Tensor#

Physicist’s Hermite polynomial H n ( input ) H_{n}(\text{input}) Hn(input).

If n = 0 n = 0 n=0, 1 1 1 is returned. If n = 1 n = 1 n=1, input \text{input} input is returned. Otherwise, the recursion:

H n + 1 ( input ) = 2 × input × H n ( input ) − H n − 1 ( input ) H_{n + 1}(\text{input}) = 2 \times \text{input} \times H_{n}(\text{input}) - H_{n - 1}(\text{input}) Hn+1(input)=2×input×Hn(input)Hn1(input)

is evaluated.

Parameters
  • input (Tensor) – the input tensor.

  • n (Tensor) – Degree of the polynomial.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.hermite_polynomial_he(input, n, *, out=None) Tensor#

Probabilist’s Hermite polynomial H e n ( input ) He_{n}(\text{input}) Hen(input).

If n = 0 n = 0 n=0, 1 1 1 is returned. If n = 1 n = 1 n=1, input \text{input} input is returned. Otherwise, the recursion:

H e n + 1 ( input ) = 2 × input × H e n ( input ) − H e n − 1 ( input ) He_{n + 1}(\text{input}) = 2 \times \text{input} \times He_{n}(\text{input}) - He_{n - 1}(\text{input}) Hen+1(input)=2×input×Hen(input)Hen1(input)

is evaluated.

Parameters
  • input (Tensor) – the input tensor.

  • n (Tensor) – Degree of the polynomial.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.i0(input, *, out=None) Tensor#

Computes the zeroth order modified Bessel function of the first kind for each element of input.

out i = I 0 ( input i ) = ∑ k = 0 ∞ ( input i 2 / 4 )k ( k ! )2 \text{out}_{i} = I_0(\text{input}_{i}) = \sum_{k=0}^{\infty} \frac{(\text{input}_{i}^2/4)^k}{(k!)^2} outi=I0(inputi)=k=0(k!)2(inputi2/4)k

Parameters

input (Tensor) – the input tensor

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> torch.i0(torch.arange(5, dtype=torch.float32))
tensor([ 1.0000,  1.2661,  2.2796,  4.8808, 11.3019])
torch.special.i0e(input, *, out=None) Tensor#

Computes the exponentially scaled zeroth order modified Bessel function of the first kind (as defined below) for each element of input.

out i = exp ⁡ ( − ∣ x ∣ ) ∗ i 0 ( x ) = exp ⁡ ( − ∣ x ∣ ) ∗ ∑ k = 0 ∞ ( input i 2 / 4 )k ( k ! )2 \text{out}_{i} = \exp(-|x|) * i0(x) = \exp(-|x|) * \sum_{k=0}^{\infty} \frac{(\text{input}_{i}^2/4)^k}{(k!)^2} outi=exp(x)i0(x)=exp(x)k=0(k!)2(inputi2/4)k

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> torch.special.i0e(torch.arange(5, dtype=torch.float32))
tensor([1.0000, 0.4658, 0.3085, 0.2430, 0.2070])
torch.special.i1(input, *, out=None) Tensor#

Computes the first order modified Bessel function of the first kind (as defined below) for each element of input.

out i = ( input i ) 2 ∗ ∑ k = 0 ∞ ( input i 2 / 4 )k ( k ! ) ∗ ( k + 1 ) ! \text{out}_{i} = \frac{(\text{input}_{i})}{2} * \sum_{k=0}^{\infty} \frac{(\text{input}_{i}^2/4)^k}{(k!) * (k+1)!} outi=2(inputi)k=0(k!)(k+1)!(inputi2/4)k

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> torch.special.i1(torch.arange(5, dtype=torch.float32))
tensor([0.0000, 0.5652, 1.5906, 3.9534, 9.7595])
torch.special.i1e(input, *, out=None) Tensor#

Computes the exponentially scaled first order modified Bessel function of the first kind (as defined below) for each element of input.

out i = exp ⁡ ( − ∣ x ∣ ) ∗ i 1 ( x ) = exp ⁡ ( − ∣ x ∣ ) ∗ ( input i ) 2 ∗ ∑ k = 0 ∞ ( input i 2 / 4 )k ( k ! ) ∗ ( k + 1 ) ! \text{out}_{i} = \exp(-|x|) * i1(x) = \exp(-|x|) * \frac{(\text{input}_{i})}{2} * \sum_{k=0}^{\infty} \frac{(\text{input}_{i}^2/4)^k}{(k!) * (k+1)!} outi=exp(x)i1(x)=exp(x)2(inputi)k=0(k!)(k+1)!(inputi2/4)k

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> torch.special.i1e(torch.arange(5, dtype=torch.float32))
tensor([0.0000, 0.2079, 0.2153, 0.1968, 0.1788])
torch.special.laguerre_polynomial_l(input, n, *, out=None) Tensor#

Laguerre polynomial L n ( input ) L_{n}(\text{input}) Ln(input).

If n = 0 n = 0 n=0, 1 1 1 is returned. If n = 1 n = 1 n=1, input \text{input} input is returned. Otherwise, the recursion:

L n + 1 ( input ) = 2 × input × L n ( input ) − L n − 1 ( input ) L_{n + 1}(\text{input}) = 2 \times \text{input} \times L_{n}(\text{input}) - L_{n - 1}(\text{input}) Ln+1(input)=2×input×Ln(input)Ln1(input)

is evaluated.

Parameters
  • input (Tensor) – the input tensor.

  • n (Tensor) – Degree of the polynomial.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.legendre_polynomial_p(input, n, *, out=None) Tensor#

Legendre polynomial P n ( input ) P_{n}(\text{input}) Pn(input).

If n = 0 n = 0 n=0, 1 1 1 is returned. If n = 1 n = 1 n=1, input \text{input} input is returned. Otherwise, the recursion:

P n + 1 ( input ) = 2 × input × P n ( input ) − P n − 1 ( input ) P_{n + 1}(\text{input}) = 2 \times \text{input} \times P_{n}(\text{input}) - P_{n - 1}(\text{input}) Pn+1(input)=2×input×Pn(input)Pn1(input)

is evaluated.

Parameters
  • input (Tensor) – the input tensor.

  • n (Tensor) – Degree of the polynomial.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.log1p(input, *, out=None) Tensor#

Alias for torch.log1p().

torch.special.log_ndtr(input, *, out=None) Tensor#

Computes the log of the area under the standard Gaussian probability density function, integrated from minus infinity to input, elementwise.

log_ndtr ( x ) = log ⁡ ( 1 2 π ∫ − ∞ x e − 1 2 t2 d t ) \text{log\_ndtr}(x) = \log\left(\frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt \right) log_ndtr(x)=log(2π 1xe21t2dt)

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> torch.special.log_ndtr(torch.tensor([-3., -2, -1, 0, 1, 2, 3]))
tensor([-6.6077 -3.7832 -1.841  -0.6931 -0.1728 -0.023  -0.0014])
torch.special.log_softmax(input, dim, *, dtype=None) Tensor#

Computes softmax followed by a logarithm.

While mathematically equivalent to log(softmax(x)), doing these two operations separately is slower and numerically unstable. This function is computed as:

log_softmax ( x i ) = log ⁡ ( exp ⁡ ( x i ) ∑ j exp ⁡ ( x j ) ) \text{log\_softmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right) log_softmax(xi)=log(jexp(xj)exp(xi))

Parameters
  • input (Tensor) – input

  • dim (int) – A dimension along which log_softmax will be computed.

  • dtype (torch.dtype, optional) – the desired data type of returned tensor. If specified, the input tensor is cast to dtype before the operation is performed. This is useful for preventing data type overflows. Default: None.

Example:

>>> t = torch.ones(2, 2)
>>> torch.special.log_softmax(t, 0)
tensor([[-0.6931, -0.6931],
        [-0.6931, -0.6931]])
torch.special.logit(input, eps=None, *, out=None) Tensor#

Returns a new tensor with the logit of the elements of input. input is clamped to [eps, 1 - eps] when eps is not None. When eps is None and input < 0 or input > 1, the function will yields NaN.

y i = ln ⁡ ( z i 1 − z i ) z i = { x i if eps is None eps if  x i < eps x i if eps ≤ x i ≤ 1 − eps 1 − eps if  x i > 1 − eps \begin{align} y_{i} &= \ln(\frac{z_{i}}{1 - z_{i}}) \\ z_{i} &= \begin{cases} x_{i} & \text{if eps is None} \\ \text{eps} & \text{if } x_{i} < \text{eps} \\ x_{i} & \text{if } \text{eps} \leq x_{i} \leq 1 - \text{eps} \\ 1 - \text{eps} & \text{if } x_{i} > 1 - \text{eps} \end{cases} \end{align} yizi=ln(1zizi)= xiepsxi1epsif eps is Noneif xi<epsif epsxi1epsif xi>1eps

Parameters
  • input (Tensor) – the input tensor.

  • eps (float, optional) – the epsilon for input clamp bound. Default: None

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> a = torch.rand(5)
>>> a
tensor([0.2796, 0.9331, 0.6486, 0.1523, 0.6516])
>>> torch.special.logit(a, eps=1e-6)
tensor([-0.9466,  2.6352,  0.6131, -1.7169,  0.6261])
torch.special.logsumexp(input, dim, keepdim=False, *, out=None)#

Alias for torch.logsumexp().

torch.special.modified_bessel_i0(input, *, out=None) Tensor#

Modified Bessel function of the first kind of order 0 0 0.

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.modified_bessel_i1(input, *, out=None) Tensor#

Modified Bessel function of the first kind of order 1 1 1.

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.modified_bessel_k0(input, *, out=None) Tensor#

Modified Bessel function of the second kind of order 0 0 0.

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.modified_bessel_k1(input, *, out=None) Tensor#

Modified Bessel function of the second kind of order 1 1 1.

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.multigammaln(input, p, *, out=None) Tensor#

Computes the multivariate log-gamma function with dimension p p p element-wise, given by

log ⁡ ( Γ p ( a ) ) = C + ∑ i = 1 p log ⁡ ( Γ ( a − i − 1 2 ) ) \log(\Gamma_{p}(a)) = C + \displaystyle \sum_{i=1}^{p} \log\left(\Gamma\left(a - \frac{i - 1}{2}\right)\right) log(Γp(a))=C+i=1plog(Γ(a2i1))

where C = log ⁡ ( π ) ⋅ p ( p − 1 ) 4 C = \log(\pi) \cdot \frac{p (p - 1)}{4} C=log(π)4p(p1) and Γ ( − ) \Gamma(-) Γ() is the Gamma function.

All elements must be greater than p − 1 2 \frac{p - 1}{2} 2p1, otherwise the behavior is undefined.

Parameters
  • input (Tensor) – the tensor to compute the multivariate log-gamma function

  • p (int) – the number of dimensions

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> a = torch.empty(2, 3).uniform_(1, 2)
>>> a
tensor([[1.6835, 1.8474, 1.1929],
        [1.0475, 1.7162, 1.4180]])
>>> torch.special.multigammaln(a, 2)
tensor([[0.3928, 0.4007, 0.7586],
        [1.0311, 0.3901, 0.5049]])
torch.special.ndtr(input, *, out=None) Tensor#

Computes the area under the standard Gaussian probability density function, integrated from minus infinity to input, elementwise.

ndtr ( x ) = 1 2 π ∫ − ∞ x e − 1 2 t2 d t \text{ndtr}(x) = \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt ndtr(x)=2π 1xe21t2dt

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> torch.special.ndtr(torch.tensor([-3., -2, -1, 0, 1, 2, 3]))
tensor([0.0013, 0.0228, 0.1587, 0.5000, 0.8413, 0.9772, 0.9987])
torch.special.ndtri(input, *, out=None) Tensor#

Computes the argument, x, for which the area under the Gaussian probability density function (integrated from minus infinity to x) is equal to input, elementwise.

ndtri ( p ) = 2 erf − 1 ( 2 p − 1 ) \text{ndtri}(p) = \sqrt{2}\text{erf}^{-1}(2p - 1) ndtri(p)=2 erf1(2p1)

Note

Also known as quantile function for Normal Distribution.

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> torch.special.ndtri(torch.tensor([0, 0.25, 0.5, 0.75, 1]))
tensor([   -inf, -0.6745,  0.0000,  0.6745,     inf])
torch.special.polygamma(n, input, *, out=None) Tensor#

Computes the n t h n^{th} nth derivative of the digamma function on input. n ≥ 0 n \geq 0 n0 is called the order of the polygamma function.

ψ ( n ) ( x ) = d ( n ) d x ( n ) ψ ( x ) \psi^{(n)}(x) = \frac{d^{(n)}}{dx^{(n)}} \psi(x) ψ(n)(x)=dx(n)d(n)ψ(x)

Note

This function is implemented only for nonnegative integers n ≥ 0 n \geq 0 n0.

Parameters
  • n (int) – the order of the polygamma function

  • input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> a = torch.tensor([1, 0.5])
>>> torch.special.polygamma(1, a)
tensor([1.64493, 4.9348])
>>> torch.special.polygamma(2, a)
tensor([ -2.4041, -16.8288])
>>> torch.special.polygamma(3, a)
tensor([ 6.4939, 97.4091])
>>> torch.special.polygamma(4, a)
tensor([ -24.8863, -771.4742])
torch.special.psi(input, *, out=None) Tensor#

Alias for torch.special.digamma().

torch.special.round(input, *, out=None) Tensor#

Alias for torch.round().

torch.special.scaled_modified_bessel_k0(input, *, out=None) Tensor#

Scaled modified Bessel function of the second kind of order 0 0 0.

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.scaled_modified_bessel_k1(input, *, out=None) Tensor#

Scaled modified Bessel function of the second kind of order 1 1 1.

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.shifted_chebyshev_polynomial_t(input, n, *, out=None) Tensor#

Chebyshev polynomial of the first kind T n ∗ ( input ) T_{n}^{\ast}(\text{input}) Tn(input).

Parameters
  • input (Tensor) – the input tensor.

  • n (Tensor) – Degree of the polynomial.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.shifted_chebyshev_polynomial_u(input, n, *, out=None) Tensor#

Chebyshev polynomial of the second kind U n ∗ ( input ) U_{n}^{\ast}(\text{input}) Un(input).

Parameters
  • input (Tensor) – the input tensor.

  • n (Tensor) – Degree of the polynomial.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.shifted_chebyshev_polynomial_v(input, n, *, out=None) Tensor#

Chebyshev polynomial of the third kind V n ∗ ( input ) V_{n}^{\ast}(\text{input}) Vn(input).

Parameters
  • input (Tensor) – the input tensor.

  • n (Tensor) – Degree of the polynomial.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.shifted_chebyshev_polynomial_w(input, n, *, out=None) Tensor#

Chebyshev polynomial of the fourth kind W n ∗ ( input ) W_{n}^{\ast}(\text{input}) Wn(input).

Parameters
  • input (Tensor) – the input tensor.

  • n (Tensor) – Degree of the polynomial.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.sinc(input, *, out=None) Tensor#

Computes the normalized sinc of input.

out i = { 1 , if  input i = 0 sin ⁡ ( π input i ) / ( π input i ) , otherwise \text{out}_{i} = \begin{cases} 1, & \text{if}\ \text{input}_{i}=0 \\ \sin(\pi \text{input}_{i}) / (\pi \text{input}_{i}), & \text{otherwise} \end{cases} outi={1,sin(πinputi)/(πinputi),if inputi=0otherwise

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> t = torch.randn(4)
>>> t
tensor([ 0.2252, -0.2948,  1.0267, -1.1566])
>>> torch.special.sinc(t)
tensor([ 0.9186,  0.8631, -0.0259, -0.1300])
torch.special.softmax(input, dim, *, dtype=None) Tensor#

Computes the softmax function.

Softmax is defined as:

Softmax ( x i ) = exp ⁡ ( x i ) ∑ j exp ⁡ ( x j ) \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} Softmax(xi)=jexp(xj)exp(xi)

It is applied to all slices along dim, and will re-scale them so that the elements lie in the range [0, 1] and sum to 1.

Parameters
  • input (Tensor) – input

  • dim (int) – A dimension along which softmax will be computed.

  • dtype (torch.dtype, optional) – the desired data type of returned tensor. If specified, the input tensor is cast to dtype before the operation is performed. This is useful for preventing data type overflows. Default: None.

Examples::
>>> t = torch.ones(2, 2)
>>> torch.special.softmax(t, 0)
tensor([[0.5000, 0.5000],
        [0.5000, 0.5000]])
torch.special.spherical_bessel_j0(input, *, out=None) Tensor#

Spherical Bessel function of the first kind of order 0 0 0.

Parameters

input (Tensor) – the input tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

torch.special.xlog1py(input, other, *, out=None) Tensor#

Computes input * log1p(other) with the following cases.

out i = { NaN if  other i = NaN 0 if  input i = 0.0  and  other i ! = NaN input i ∗ log1p ( other i ) otherwise \text{out}_{i} = \begin{cases} \text{NaN} & \text{if } \text{other}_{i} = \text{NaN} \\ 0 & \text{if } \text{input}_{i} = 0.0 \text{ and } \text{other}_{i} != \text{NaN} \\ \text{input}_{i} * \text{log1p}(\text{other}_{i})& \text{otherwise} \end{cases} outi= NaN0inputilog1p(otheri)if otheri=NaNif inputi=0.0 and otheri!=NaNotherwise

Similar to SciPy’s scipy.special.xlog1py.

Parameters
  • input (Number or Tensor) – Multiplier

  • other (Number or Tensor) – Argument

Note

At least one of input or other must be a tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> x = torch.zeros(5,)
>>> y = torch.tensor([-1, 0, 1, float('inf'), float('nan')])
>>> torch.special.xlog1py(x, y)
tensor([0., 0., 0., 0., nan])
>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([3, 2, 1])
>>> torch.special.xlog1py(x, y)
tensor([1.3863, 2.1972, 2.0794])
>>> torch.special.xlog1py(x, 4)
tensor([1.6094, 3.2189, 4.8283])
>>> torch.special.xlog1py(2, y)
tensor([2.7726, 2.1972, 1.3863])
torch.special.xlogy(input, other, *, out=None) Tensor#

Computes input * log(other) with the following cases.

out i = { NaN if  other i = NaN 0 if  input i = 0.0 input i ∗ log ⁡ ( other i ) otherwise \text{out}_{i} = \begin{cases} \text{NaN} & \text{if } \text{other}_{i} = \text{NaN} \\ 0 & \text{if } \text{input}_{i} = 0.0 \\ \text{input}_{i} * \log{(\text{other}_{i})} & \text{otherwise} \end{cases} outi= NaN0inputilog(otheri)if otheri=NaNif inputi=0.0otherwise

Similar to SciPy’s scipy.special.xlogy.

Parameters
  • input (Number or Tensor) – Multiplier

  • other (Number or Tensor) – Argument

Note

At least one of input or other must be a tensor.

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> x = torch.zeros(5,)
>>> y = torch.tensor([-1, 0, 1, float('inf'), float('nan')])
>>> torch.special.xlogy(x, y)
tensor([0., 0., 0., 0., nan])
>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([3, 2, 1])
>>> torch.special.xlogy(x, y)
tensor([1.0986, 1.3863, 0.0000])
>>> torch.special.xlogy(x, 4)
tensor([1.3863, 2.7726, 4.1589])
>>> torch.special.xlogy(2, y)
tensor([2.1972, 1.3863, 0.0000])
torch.special.zeta(input, other, *, out=None) Tensor#

Computes the Hurwitz zeta function, elementwise.

ζ ( x , q ) = ∑ k = 0 ∞ 1 ( k + q )x \zeta(x, q) = \sum_{k=0}^{\infty} \frac{1}{(k + q)^x} ζ(x,q)=k=0(k+q)x1

Parameters
  • input (Tensor) – the input tensor corresponding to x.

  • other (Tensor) – the input tensor corresponding to q.

Note

The Riemann zeta function corresponds to the case when q = 1

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> x = torch.tensor([2., 4.])
>>> torch.special.zeta(x, 1)
tensor([1.6449, 1.0823])
>>> torch.special.zeta(x, torch.tensor([1., 2.]))
tensor([1.6449, 0.0823])
>>> torch.special.zeta(2, torch.tensor([1., 2.]))
tensor([1.6449, 0.6449])

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4