Created On: Jun 14, 2024 | Last Updated On: Jun 18, 2025
Hardware Prerequisite#For Intel Data Center GPU
For Intel Client GPU
Intel GPUs support (Prototype) is ready from PyTorch* 2.5 for Intel® Client GPUs and Intel® Data Center GPU Max Series on both Linux and Windows, which brings Intel GPUs and the SYCL* software stack into the official PyTorch stack with consistent user experience to embrace more AI application scenarios.
Software Prerequisite#To use PyTorch on Intel GPUs, you need to install the Intel GPUs driver first. For installation guide, visit Intel GPUs Driver Installation.
Please skip the Intel® Deep Learning Essentials installation section if you install from binaries. For building from source, please refer to PyTorch Installation Prerequisites for Intel GPUs for both Intel GPU Driver and Intel® Deep Learning Essentials Installation.
Installation# Binaries#Now that we have Intel GPU Driver installed, use the following commands to install pytorch
, torchvision
, torchaudio
.
For release wheels
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/xpu
For nightly wheels
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpuCheck availability for Intel GPU#
To check if your Intel GPU is available, you would typically use the following code:
import torch print(torch.xpu.is_available()) # torch.xpu is the API for Intel GPU support
If the output is False
, double check driver installation for Intel GPUs.
If you are migrating code from cuda
, you would change references from cuda
to xpu
. For example:
# CUDA CODE tensor = torch.tensor([1.0, 2.0]).to("cuda") # CODE for Intel GPU tensor = torch.tensor([1.0, 2.0]).to("xpu")
The following points outline the support and limitations for PyTorch with Intel GPU:
Both training and inference workflows are supported.
Both eager mode and torch.compile
is supported. The feature torch.compile
is also supported on Windows from PyTorch* 2.7 with Intel GPU, refer to How to Use Inductor on Windows with CPU/XPU.
Data types such as FP32, BF16, FP16, and Automatic Mixed Precision (AMP) are all supported.
This section contains usage examples for both inference and training workflows.
Inference Examples#Here is a few inference workflow examples.
Inference with FP32#import torch import torchvision.models as models model = models.resnet50(weights="ResNet50_Weights.DEFAULT") model.eval() data = torch.rand(1, 3, 224, 224) model = model.to("xpu") data = data.to("xpu") with torch.no_grad(): model(data) print("Execution finished")Inference with AMP#
import torch import torchvision.models as models model = models.resnet50(weights="ResNet50_Weights.DEFAULT") model.eval() data = torch.rand(1, 3, 224, 224) model = model.to("xpu") data = data.to("xpu") with torch.no_grad(): d = torch.rand(1, 3, 224, 224) d = d.to("xpu") # set dtype=torch.bfloat16 for BF16 with torch.autocast(device_type="xpu", dtype=torch.float16, enabled=True): model(data) print("Execution finished")Inference with
torch.compile
#
import torch import torchvision.models as models import time model = models.resnet50(weights="ResNet50_Weights.DEFAULT") model.eval() data = torch.rand(1, 3, 224, 224) ITERS = 10 model = model.to("xpu") data = data.to("xpu") for i in range(ITERS): start = time.time() with torch.no_grad(): model(data) torch.xpu.synchronize() end = time.time() print(f"Inference time before torch.compile for iteration {i}: {(end-start)*1000} ms") model = torch.compile(model) for i in range(ITERS): start = time.time() with torch.no_grad(): model(data) torch.xpu.synchronize() end = time.time() print(f"Inference time after torch.compile for iteration {i}: {(end-start)*1000} ms") print("Execution finished")Training Examples#
Here is a few training workflow examples.
Train with FP32#import torch import torchvision LR = 0.001 DOWNLOAD = True DATA = "datasets/cifar10/" transform = torchvision.transforms.Compose( [ torchvision.transforms.Resize((224, 224)), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) train_dataset = torchvision.datasets.CIFAR10( root=DATA, train=True, transform=transform, download=DOWNLOAD, ) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128) train_len = len(train_loader) model = torchvision.models.resnet50() criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9) model.train() model = model.to("xpu") criterion = criterion.to("xpu") print(f"Initiating training") for batch_idx, (data, target) in enumerate(train_loader): data = data.to("xpu") target = target.to("xpu") optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if (batch_idx + 1) % 10 == 0: iteration_loss = loss.item() print(f"Iteration [{batch_idx+1}/{train_len}], Loss: {iteration_loss:.4f}") torch.save( { "model_state_dict": model.state_dict(), "optimizer_state_dict": optimizer.state_dict(), }, "checkpoint.pth", ) print("Execution finished")Train with AMP#
Note: Training with GradScaler
requires hardware support for FP64
. FP64
is not natively supported by the Intel® Arc™ A-Series Graphics. If you run your workloads on Intel® Arc™ A-Series Graphics, please disable GradScaler
.
import torch import torchvision LR = 0.001 DOWNLOAD = True DATA = "datasets/cifar10/" use_amp=True transform = torchvision.transforms.Compose( [ torchvision.transforms.Resize((224, 224)), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) train_dataset = torchvision.datasets.CIFAR10( root=DATA, train=True, transform=transform, download=DOWNLOAD, ) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128) train_len = len(train_loader) model = torchvision.models.resnet50() criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9) scaler = torch.amp.GradScaler(device="xpu", enabled=use_amp) model.train() model = model.to("xpu") criterion = criterion.to("xpu") print(f"Initiating training") for batch_idx, (data, target) in enumerate(train_loader): data = data.to("xpu") target = target.to("xpu") # set dtype=torch.bfloat16 for BF16 with torch.autocast(device_type="xpu", dtype=torch.float16, enabled=use_amp): output = model(data) loss = criterion(output, target) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() optimizer.zero_grad() if (batch_idx + 1) % 10 == 0: iteration_loss = loss.item() print(f"Iteration [{batch_idx+1}/{train_len}], Loss: {iteration_loss:.4f}") torch.save( { "model_state_dict": model.state_dict(), "optimizer_state_dict": optimizer.state_dict(), }, "checkpoint.pth", ) print("Execution finished")Train with
torch.compile
#
import torch import torchvision LR = 0.001 DOWNLOAD = True DATA = "datasets/cifar10/" transform = torchvision.transforms.Compose( [ torchvision.transforms.Resize((224, 224)), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) train_dataset = torchvision.datasets.CIFAR10( root=DATA, train=True, transform=transform, download=DOWNLOAD, ) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128) train_len = len(train_loader) model = torchvision.models.resnet50() criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9) model.train() model = model.to("xpu") criterion = criterion.to("xpu") model = torch.compile(model) print(f"Initiating training with torch compile") for batch_idx, (data, target) in enumerate(train_loader): data = data.to("xpu") target = target.to("xpu") optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if (batch_idx + 1) % 10 == 0: iteration_loss = loss.item() print(f"Iteration [{batch_idx+1}/{train_len}], Loss: {iteration_loss:.4f}") torch.save( { "model_state_dict": model.state_dict(), "optimizer_state_dict": optimizer.state_dict(), }, "checkpoint.pth", ) print("Execution finished")
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4