Repeat elements of a tensor.
input (Tensor) – the input tensor.
repeats (Tensor or int) – The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
dim (int, optional) – The dimension along which to repeat values. By default, use the flattened input array, and return a flat output array.
output_size (int, optional) – Total output size for the given axis ( e.g. sum of repeats). If given, it will avoid stream synchronization needed to calculate output shape of the tensor.
Repeated tensor which has the same shape as input, except along the given axis.
Example:
>>> x = torch.tensor([1, 2, 3]) >>> x.repeat_interleave(2) tensor([1, 1, 2, 2, 3, 3]) >>> y = torch.tensor([[1, 2], [3, 4]]) >>> torch.repeat_interleave(y, 2) tensor([1, 1, 2, 2, 3, 3, 4, 4]) >>> torch.repeat_interleave(y, 3, dim=1) tensor([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]]) >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0) tensor([[1, 2], [3, 4], [3, 4]]) >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0, output_size=3) tensor([[1, 2], [3, 4], [3, 4]])
If the repeats is tensor([n1, n2, n3, …]), then the output will be tensor([0, 0, …, 1, 1, …, 2, 2, …, …]) where 0 appears n1 times, 1 appears n2 times, 2 appears n3 times, etc.
Repeats 0 repeats[0] times, 1 repeats[1] times, 2 repeats[2] times, etc.
repeats (Tensor) – The number of repetitions for each element.
Repeated tensor of size sum(repeats).
Example:
>>> torch.repeat_interleave(torch.tensor([1, 2, 3])) tensor([0, 1, 1, 2, 2, 2])
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4