Anneals the learning rate in each parameter group to a fixed value.
This learning rate scheduler is meant to be used with Stochastic Weight Averaging (SWA) method (see torch.optim.swa_utils.AveragedModel).
The SWALR
scheduler can be used together with other schedulers to switch to a constant learning rate late in the training as in the example below.
>>> loader, optimizer, model = ... >>> lr_lambda = lambda epoch: 0.9 >>> scheduler = torch.optim.lr_scheduler.MultiplicativeLR(optimizer, >>> lr_lambda=lr_lambda) >>> swa_scheduler = torch.optim.swa_utils.SWALR(optimizer, >>> anneal_strategy="linear", anneal_epochs=20, swa_lr=0.05) >>> swa_start = 160 >>> for i in range(300): >>> for input, target in loader: >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() >>> if i > swa_start: >>> swa_scheduler.step() >>> else: >>> scheduler.step()
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4