A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.pytorch.org/docs/stable/generated/torch.logical_xor.html below:

torch.logical_xor — PyTorch 2.8 documentation

Computes the element-wise logical XOR of the given input tensors. Zeros are treated as False and nonzeros are treated as True.

>>> torch.logical_xor(torch.tensor([True, False, True]), torch.tensor([True, False, False]))
tensor([False, False,  True])
>>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8)
>>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8)
>>> torch.logical_xor(a, b)
tensor([ True,  True, False, False])
>>> torch.logical_xor(a.double(), b.double())
tensor([ True,  True, False, False])
>>> torch.logical_xor(a.double(), b)
tensor([ True,  True, False, False])
>>> torch.logical_xor(a, b, out=torch.empty(4, dtype=torch.bool))
tensor([ True,  True, False, False])

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4