Computes a vector or matrix norm.
Supports input of float, double, cfloat and cdouble dtypes.
Whether this function computes a vector or matrix norm is determined as follows:
If dim
is an int, the vector norm will be computed.
If dim
is a 2-tuple, the matrix norm will be computed.
If dim
= None and ord
= None, A
will be flattened to 1D and the 2-norm of the resulting vector will be computed.
If dim
= None and ord
!= None, A
must be 1D or 2D.
ord
defines the norm that is computed. The following norms are supported:
where inf refers to float(‘inf’), NumPy’s inf object, or any equivalent object.
See also
torch.linalg.vector_norm()
computes a vector norm.
torch.linalg.matrix_norm()
computes a matrix norm.
The above functions are often clearer and more flexible than using torch.linalg.norm()
. For example, torch.linalg.norm(A, ord=1, dim=(0, 1)) always computes a matrix norm, but with torch.linalg.vector_norm(A, ord=1, dim=(0, 1)) it is possible to compute a vector norm over the two dimensions.
A (Tensor) – tensor of shape (*, n) or (*, m, n) where * is zero or more batch dimensions
ord (int, float, inf, -inf, 'fro', 'nuc', optional) – order of norm. Default: None
dim (int, Tuple[int], optional) – dimensions over which to compute the vector or matrix norm. See above for the behavior when dim
= None. Default: None
keepdim (bool, optional) – If set to True, the reduced dimensions are retained in the result as dimensions with size one. Default: False
out (Tensor, optional) – output tensor. Ignored if None. Default: None.
dtype (torch.dtype
, optional) – If specified, the input tensor is cast to dtype
before performing the operation, and the returned tensor’s type will be dtype
. Default: None
A real-valued tensor, even when A
is complex.
Examples:
>>> from torch import linalg as LA >>> a = torch.arange(9, dtype=torch.float) - 4 >>> a tensor([-4., -3., -2., -1., 0., 1., 2., 3., 4.]) >>> B = a.reshape((3, 3)) >>> B tensor([[-4., -3., -2.], [-1., 0., 1.], [ 2., 3., 4.]]) >>> LA.norm(a) tensor(7.7460) >>> LA.norm(B) tensor(7.7460) >>> LA.norm(B, 'fro') tensor(7.7460) >>> LA.norm(a, float('inf')) tensor(4.) >>> LA.norm(B, float('inf')) tensor(9.) >>> LA.norm(a, -float('inf')) tensor(0.) >>> LA.norm(B, -float('inf')) tensor(2.) >>> LA.norm(a, 1) tensor(20.) >>> LA.norm(B, 1) tensor(7.) >>> LA.norm(a, -1) tensor(0.) >>> LA.norm(B, -1) tensor(6.) >>> LA.norm(a, 2) tensor(7.7460) >>> LA.norm(B, 2) tensor(7.3485) >>> LA.norm(a, -2) tensor(0.) >>> LA.norm(B.double(), -2) tensor(1.8570e-16, dtype=torch.float64) >>> LA.norm(a, 3) tensor(5.8480) >>> LA.norm(a, -3) tensor(0.)
Using the dim
argument to compute vector norms:
>>> c = torch.tensor([[1., 2., 3.], ... [-1, 1, 4]]) >>> LA.norm(c, dim=0) tensor([1.4142, 2.2361, 5.0000]) >>> LA.norm(c, dim=1) tensor([3.7417, 4.2426]) >>> LA.norm(c, ord=1, dim=1) tensor([6., 6.])
Using the dim
argument to compute matrix norms:
>>> A = torch.arange(8, dtype=torch.float).reshape(2, 2, 2) >>> LA.norm(A, dim=(1,2)) tensor([ 3.7417, 11.2250]) >>> LA.norm(A[0, :, :]), LA.norm(A[1, :, :]) (tensor(3.7417), tensor(11.2250))
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4