A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.pytorch.org/docs/stable/generated/torch.linalg.cross.html below:

torch.linalg.cross — PyTorch 2.8 documentation

Computes the cross product of two 3-dimensional vectors.

Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of vectors, for which it computes the product along the dimension dim. It broadcasts over the batch dimensions.

>>> a = torch.randn(4, 3)
>>> a
tensor([[-0.3956,  1.1455,  1.6895],
        [-0.5849,  1.3672,  0.3599],
        [-1.1626,  0.7180, -0.0521],
        [-0.1339,  0.9902, -2.0225]])
>>> b = torch.randn(4, 3)
>>> b
tensor([[-0.0257, -1.4725, -1.2251],
        [-1.1479, -0.7005, -1.9757],
        [-1.3904,  0.3726, -1.1836],
        [-0.9688, -0.7153,  0.2159]])
>>> torch.linalg.cross(a, b)
tensor([[ 1.0844, -0.5281,  0.6120],
        [-2.4490, -1.5687,  1.9792],
        [-0.8304, -1.3037,  0.5650],
        [-1.2329,  1.9883,  1.0551]])
>>> a = torch.randn(1, 3)  # a is broadcast to match shape of b
>>> a
tensor([[-0.9941, -0.5132,  0.5681]])
>>> torch.linalg.cross(a, b)
tensor([[ 1.4653, -1.2325,  1.4507],
        [ 1.4119, -2.6163,  0.1073],
        [ 0.3957, -1.9666, -1.0840],
        [ 0.2956, -0.3357,  0.2139]])

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4