Performs a batch matrix-matrix product of matrices stored in input
and mat2
.
input
and mat2
must be 3-D tensors each containing the same number of matrices.
If input
is a ( b × n × m ) (b \times n \times m) (b×n×m) tensor, mat2
is a ( b × m × p ) (b \times m \times p) (b×m×p) tensor, out
will be a ( b × n × p ) (b \times n \times p) (b×n×p) tensor.
out i = input i @ mat2 i \text{out}_i = \text{input}_i \mathbin{@} \text{mat2}_i outi=inputi@mat2i
This operator supports TensorFloat32.
On certain ROCm devices, when using float16 inputs this module will use different precision for backward.
out (Tensor, optional) – the output tensor.
Example:
>>> input = torch.randn(10, 3, 4) >>> mat2 = torch.randn(10, 4, 5) >>> res = torch.bmm(input, mat2) >>> res.size() torch.Size([10, 3, 5])
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4