Draws binary random numbers (0 or 1) from a Bernoulli distribution.
The input
tensor should be a tensor containing probabilities to be used for drawing the binary random number. Hence, all values in input
have to be in the range: 0 ≤ input i ≤ 1 0 \leq \text{input}_i \leq 1 0≤inputi≤1.
The i t h \text{i}^{th} ith element of the output tensor will draw a value 1 1 1 according to the i t h \text{i}^{th} ith probability value given in input
.
out i ∼ B e r n o u l l i ( p = input i ) \text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i}) outi∼Bernoulli(p=inputi)
The returned out
tensor only has values 0 or 1 and is of the same shape as input
.
out
can have integral dtype
, but input
must have floating point dtype
.
input (Tensor) – the input tensor of probability values for the Bernoulli distribution
generator (torch.Generator
, optional) – a pseudorandom number generator for sampling
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.empty(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1] >>> a tensor([[ 0.1737, 0.0950, 0.3609], [ 0.7148, 0.0289, 0.2676], [ 0.9456, 0.8937, 0.7202]]) >>> torch.bernoulli(a) tensor([[ 1., 0., 0.], [ 0., 0., 0.], [ 1., 1., 1.]]) >>> a = torch.ones(3, 3) # probability of drawing "1" is 1 >>> torch.bernoulli(a) tensor([[ 1., 1., 1.], [ 1., 1., 1.], [ 1., 1., 1.]]) >>> a = torch.zeros(3, 3) # probability of drawing "1" is 0 >>> torch.bernoulli(a) tensor([[ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.]])
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4