A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.pytorch.org/docs/stable/generated/torch.arange.html below:

torch.arange — PyTorch 2.8 documentation

Returns a 1-D tensor of size ⌈ end − start step ⌉ \left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil stependstart with values from the interval [start, end) taken with common difference step beginning from start.

Note: When using floating-point dtypes (especially reduced precision types like bfloat16), the results may be affected by floating-point rounding behavior. Some values in the sequence might not be exactly representable in certain floating-point formats, which can lead to repeated values or unexpected rounding. For precise sequences, it is recommended to use integer dtypes instead of floating-point dtypes.

Note that non-integer step is subject to floating point rounding errors when comparing against end; to avoid inconsistency, we advise subtracting a small epsilon from end in such cases.

out i + 1 = out i + step \text{out}_{{i+1}} = \text{out}_{i} + \text{step} outi+1=outi+step

Parameters
Keyword Arguments

Example:

>>> torch.arange(5)
tensor([ 0,  1,  2,  3,  4])
>>> torch.arange(1, 4)
tensor([ 1,  2,  3])
>>> torch.arange(1, 2.5, 0.5)
tensor([ 1.0000,  1.5000,  2.0000])

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4