A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.pytorch.org/docs/stable/generated/torch.Tensor.to_sparse_csr.html below:

torch.Tensor.to_sparse_csr — PyTorch 2.7 documentation

torch.Tensor.to_sparse_csr
Tensor.to_sparse_csr(dense_dim=None) Tensor

Convert a tensor to compressed row storage format (CSR). Except for strided tensors, only works with 2D tensors. If the self is strided, then the number of dense dimensions could be specified, and a hybrid CSR tensor will be created, with dense_dim dense dimensions and self.dim() - 2 - dense_dim batch dimension.

Parameters

dense_dim (int, optional) – Number of dense dimensions of the resulting CSR tensor. This argument should be used only if self is a strided tensor, and must be a value between 0 and dimension of self tensor minus two.

Example:

>>> dense = torch.randn(5, 5)
>>> sparse = dense.to_sparse_csr()
>>> sparse._nnz()
25

>>> dense = torch.zeros(3, 3, 1, 1)
>>> dense[0, 0] = dense[1, 2] = dense[2, 1] = 1
>>> dense.to_sparse_csr(dense_dim=2)
tensor(crow_indices=tensor([0, 1, 2, 3]),
       col_indices=tensor([0, 2, 1]),
       values=tensor([[[1.]],

                      [[1.]],

                      [[1.]]]), size=(3, 3, 1, 1), nnz=3,
       layout=torch.sparse_csr)
Docs

Access comprehensive developer documentation for PyTorch

View Docs Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials Resources

Find development resources and get your questions answered

View Resources

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4