A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.pytorch.org/docs/stable/generated/torch.Tensor.to.html below:

torch.Tensor.to — PyTorch 2.7 documentation

torch.Tensor.to
Tensor.to(*args, **kwargs) Tensor

Performs Tensor dtype and/or device conversion. A torch.dtype and torch.device are inferred from the arguments of self.to(*args, **kwargs).

Here are the ways to call to:

to(dtype, non_blocking=False, copy=False, memory_format=torch.preserve_format) Tensor

Returns a Tensor with the specified dtype

Args:

memory_format (torch.memory_format, optional): the desired memory format of returned Tensor. Default: torch.preserve_format.

torch.to(device=None, dtype=None, non_blocking=False, copy=False, memory_format=torch.preserve_format) Tensor

Returns a Tensor with the specified device and (optional) dtype. If dtype is None it is inferred to be self.dtype. When non_blocking is set to True, the function attempts to perform the conversion asynchronously with respect to the host, if possible. This asynchronous behavior applies to both pinned and pageable memory. However, caution is advised when using this feature. For more information, refer to the tutorial on good usage of non_blocking and pin_memory. When copy is set, a new Tensor is created even when the Tensor already matches the desired conversion.

Args:

memory_format (torch.memory_format, optional): the desired memory format of returned Tensor. Default: torch.preserve_format.

torch.to(other, non_blocking=False, copy=False) Tensor

Returns a Tensor with same torch.dtype and torch.device as the Tensor other. When non_blocking is set to True, the function attempts to perform the conversion asynchronously with respect to the host, if possible. This asynchronous behavior applies to both pinned and pageable memory. However, caution is advised when using this feature. For more information, refer to the tutorial on good usage of non_blocking and pin_memory. When copy is set, a new Tensor is created even when the Tensor already matches the desired conversion.

Example:

>>> tensor = torch.randn(2, 2)  # Initially dtype=float32, device=cpu
>>> tensor.to(torch.float64)
tensor([[-0.5044,  0.0005],
        [ 0.3310, -0.0584]], dtype=torch.float64)

>>> cuda0 = torch.device('cuda:0')
>>> tensor.to(cuda0)
tensor([[-0.5044,  0.0005],
        [ 0.3310, -0.0584]], device='cuda:0')

>>> tensor.to(cuda0, dtype=torch.float64)
tensor([[-0.5044,  0.0005],
        [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0')

>>> other = torch.randn((), dtype=torch.float64, device=cuda0)
>>> tensor.to(other, non_blocking=True)
tensor([[-0.5044,  0.0005],
        [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0')

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4