A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.pytorch.org/docs/main/generated/torch.nn.LSTM.html below:

LSTM — PyTorch main documentation

Apply a multi-layer long short-term memory (LSTM) RNN to an input sequence. For each element in the input sequence, each layer computes the following function:

i t = σ ( W i i x t + b i i + W h i h t − 1 + b h i ) f t = σ ( W i f x t + b i f + W h f h t − 1 + b h f ) g t = tanh ⁡ ( W i g x t + b i g + W h g h t − 1 + b h g ) o t = σ ( W i o x t + b i o + W h o h t − 1 + b h o ) c t = f t ⊙ c t − 1 + i t ⊙ g t h t = o t ⊙ tanh ⁡ ( c t ) \begin{array}{ll} \\ i_t = \sigma(W_{ii} x_t + b_{ii} + W_{hi} h_{t-1} + b_{hi}) \\ f_t = \sigma(W_{if} x_t + b_{if} + W_{hf} h_{t-1} + b_{hf}) \\ g_t = \tanh(W_{ig} x_t + b_{ig} + W_{hg} h_{t-1} + b_{hg}) \\ o_t = \sigma(W_{io} x_t + b_{io} + W_{ho} h_{t-1} + b_{ho}) \\ c_t = f_t \odot c_{t-1} + i_t \odot g_t \\ h_t = o_t \odot \tanh(c_t) \\ \end{array} it=σ(Wiixt+bii+Whiht1+bhi)ft=σ(Wifxt+bif+Whfht1+bhf)gt=tanh(Wigxt+big+Whght1+bhg)ot=σ(Wioxt+bio+Whoht1+bho)ct=ftct1+itgtht=ottanh(ct)

where h t h_t ht is the hidden state at time t, c t c_t ct is the cell state at time t, x t x_t xt is the input at time t, h t − 1 h_{t-1} ht1 is the hidden state of the layer at time t-1 or the initial hidden state at time 0, and i t i_t it, f t f_t ft, g t g_t gt, o t o_t ot are the input, forget, cell, and output gates, respectively. σ \sigma σ is the sigmoid function, and ⊙ \odot is the Hadamard product.

In a multilayer LSTM, the input x t ( l ) x^{(l)}_t xt(l) of the l l l -th layer ( l ≥ 2 l \ge 2 l2) is the hidden state h t ( l − 1 ) h^{(l-1)}_t ht(l1) of the previous layer multiplied by dropout δ t ( l − 1 ) \delta^{(l-1)}_t δt(l1) where each δ t ( l − 1 ) \delta^{(l-1)}_t δt(l1) is a Bernoulli random variable which is 0 0 0 with probability dropout.

If proj_size > 0 is specified, LSTM with projections will be used. This changes the LSTM cell in the following way. First, the dimension of h t h_t ht will be changed from hidden_size to proj_size (dimensions of W h i W_{hi} Whi will be changed accordingly). Second, the output hidden state of each layer will be multiplied by a learnable projection matrix: h t = W h r h t h_t = W_{hr}h_t ht=Whrht. Note that as a consequence of this, the output of LSTM network will be of different shape as well. See Inputs/Outputs sections below for exact dimensions of all variables. You can find more details in https://arxiv.org/abs/1402.1128.

Parameters
Inputs: input, (h_0, c_0)

where:

N = batch size L = sequence length D = 2  if bidirectional=True otherwise  1 H i n = input_size H c e l l = hidden_size H o u t = proj_size if proj_size > 0  otherwise hidden_size \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input\_size} \\ H_{cell} ={} & \text{hidden\_size} \\ H_{out} ={} & \text{proj\_size if } \text{proj\_size}>0 \text{ otherwise hidden\_size} \\ \end{aligned} N=L=D=Hin=Hcell=Hout=batch sizesequence length2 if bidirectional=True otherwise 1input_sizehidden_sizeproj_size if proj_size>0 otherwise hidden_size

Outputs: output, (h_n, c_n)
Variables

Note

All the weights and biases are initialized from U ( − k , k ) \mathcal{U}(-\sqrt{k}, \sqrt{k}) U(k ,k ) where k = 1 hidden_size k = \frac{1}{\text{hidden\_size}} k=hidden_size1

Note

For bidirectional LSTMs, forward and backward are directions 0 and 1 respectively. Example of splitting the output layers when batch_first=False: output.view(seq_len, batch, num_directions, hidden_size).

Note

For bidirectional LSTMs, h_n is not equivalent to the last element of output; the former contains the final forward and reverse hidden states, while the latter contains the final forward hidden state and the initial reverse hidden state.

Note

batch_first argument is ignored for unbatched inputs.

Note

proj_size should be smaller than hidden_size.

Warning

There are known non-determinism issues for RNN functions on some versions of cuDNN and CUDA. You can enforce deterministic behavior by setting the following environment variables:

On CUDA 10.1, set environment variable CUDA_LAUNCH_BLOCKING=1. This may affect performance.

On CUDA 10.2 or later, set environment variable (note the leading colon symbol) CUBLAS_WORKSPACE_CONFIG=:16:8 or CUBLAS_WORKSPACE_CONFIG=:4096:2.

See the cuDNN 8 Release Notes for more information.

Note

If the following conditions are satisfied: 1) cudnn is enabled, 2) input data is on the GPU 3) input data has dtype torch.float16 4) V100 GPU is used, 5) input data is not in PackedSequence format persistent algorithm can be selected to improve performance.

Examples:

>>> rnn = nn.LSTM(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> c0 = torch.randn(2, 3, 20)
>>> output, (hn, cn) = rnn(input, (h0, c0))

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4