Splits input
, a tensor with three or more dimensions, into multiple tensors depthwise according to indices_or_sections
. Each split is a view of input
.
This is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=2) (the split dimension is 2), except that if indices_or_sections
is an integer it must evenly divide the split dimension or a runtime error will be thrown.
>>> t = torch.arange(16.0).reshape(2, 2, 4) >>> t tensor([[[ 0., 1., 2., 3.], [ 4., 5., 6., 7.]], [[ 8., 9., 10., 11.], [12., 13., 14., 15.]]]) >>> torch.dsplit(t, 2) (tensor([[[ 0., 1.], [ 4., 5.]], [[ 8., 9.], [12., 13.]]]), tensor([[[ 2., 3.], [ 6., 7.]], [[10., 11.], [14., 15.]]])) >>> torch.dsplit(t, [3, 6]) (tensor([[[ 0., 1., 2.], [ 4., 5., 6.]], [[ 8., 9., 10.], [12., 13., 14.]]]), tensor([[[ 3.], [ 7.]], [[11.], [15.]]]), tensor([], size=(2, 2, 0)))
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4