A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.pytorch.org/docs/main/generated/torch.Tensor.to_sparse_csc.html below:

torch.Tensor.to_sparse_csc — PyTorch main documentation

Convert a tensor to compressed column storage (CSC) format. Except for strided tensors, only works with 2D tensors. If the self is strided, then the number of dense dimensions could be specified, and a hybrid CSC tensor will be created, with dense_dim dense dimensions and self.dim() - 2 - dense_dim batch dimension.

>>> dense = torch.randn(5, 5)
>>> sparse = dense.to_sparse_csc()
>>> sparse._nnz()
25

>>> dense = torch.zeros(3, 3, 1, 1)
>>> dense[0, 0] = dense[1, 2] = dense[2, 1] = 1
>>> dense.to_sparse_csc(dense_dim=2)
tensor(ccol_indices=tensor([0, 1, 2, 3]),
       row_indices=tensor([0, 2, 1]),
       values=tensor([[[1.]],

                      [[1.]],

                      [[1.]]]), size=(3, 3, 1, 1), nnz=3,
       layout=torch.sparse_csc)

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4