A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.pytorch.org/docs/main/generated/torch.Tensor.to.html below:

torch.Tensor.to — PyTorch main documentation

Performs Tensor dtype and/or device conversion. A torch.dtype and torch.device are inferred from the arguments of self.to(*args, **kwargs).

Note

If self requires gradients (requires_grad=True) but the target dtype specified is an integer type, the returned tensor will implicitly set requires_grad=False. This is because only tensors with floating-point or complex dtypes can require gradients.

Note

According to C++ type conversion rules, converting floating point value to integer type will truncate the fractional part. If the truncated value cannot fit into the target type (e.g., casting torch.inf to torch.long), the behavior is undefined and the result may vary across platforms.

>>> tensor = torch.randn(2, 2)  # Initially dtype=float32, device=cpu
>>> tensor.to(torch.float64)
tensor([[-0.5044,  0.0005],
        [ 0.3310, -0.0584]], dtype=torch.float64)

>>> cuda0 = torch.device('cuda:0')
>>> tensor.to(cuda0)
tensor([[-0.5044,  0.0005],
        [ 0.3310, -0.0584]], device='cuda:0')

>>> tensor.to(cuda0, dtype=torch.float64)
tensor([[-0.5044,  0.0005],
        [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0')

>>> other = torch.randn((), dtype=torch.float64, device=cuda0)
>>> tensor.to(other, non_blocking=True)
tensor([[-0.5044,  0.0005],
        [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0')

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4