A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.python.org/dev/library/sys.monitoring.html below:

sys.monitoring — Execution event monitoring — Python 3.15.0a0 documentation

sys.monitoring — Execution event monitoring¶

Added in version 3.12.

Note

sys.monitoring is a namespace within the sys module, not an independent module, so there is no need to import sys.monitoring, simply import sys and then use sys.monitoring.

This namespace provides access to the functions and constants necessary to activate and control event monitoring.

As programs execute, events occur that might be of interest to tools that monitor execution. The sys.monitoring namespace provides means to receive callbacks when events of interest occur.

The monitoring API consists of three components:

Tool identifiers¶

A tool identifier is an integer and the associated name. Tool identifiers are used to discourage tools from interfering with each other and to allow multiple tools to operate at the same time. Currently tools are completely independent and cannot be used to monitor each other. This restriction may be lifted in the future.

Before registering or activating events, a tool should choose an identifier. Identifiers are integers in the range 0 to 5 inclusive.

Registering and using tools¶
sys.monitoring.use_tool_id(tool_id: int, name: str, /) None¶

Must be called before tool_id can be used. tool_id must be in the range 0 to 5 inclusive. Raises a ValueError if tool_id is in use.

sys.monitoring.clear_tool_id(tool_id: int, /) None¶

Unregister all events and callback functions associated with tool_id.

sys.monitoring.free_tool_id(tool_id: int, /) None¶

Should be called once a tool no longer requires tool_id. Will call clear_tool_id() before releasing tool_id.

sys.monitoring.get_tool(tool_id: int, /) str | None¶

Returns the name of the tool if tool_id is in use, otherwise it returns None. tool_id must be in the range 0 to 5 inclusive.

All IDs are treated the same by the VM with regard to events, but the following IDs are pre-defined to make co-operation of tools easier:

sys.monitoring.DEBUGGER_ID = 0
sys.monitoring.COVERAGE_ID = 1
sys.monitoring.PROFILER_ID = 2
sys.monitoring.OPTIMIZER_ID = 5
Events¶

The following events are supported:

sys.monitoring.events.BRANCH_LEFT¶

A conditional branch goes left.

It is up to the tool to determine how to present “left” and “right” branches. There is no guarantee which branch is “left” and which is “right”, except that it will be consistent for the duration of the program.

sys.monitoring.events.BRANCH_RIGHT¶

A conditional branch goes right.

sys.monitoring.events.CALL¶

A call in Python code (event occurs before the call).

sys.monitoring.events.C_RAISE¶

An exception raised from any callable, except for Python functions (event occurs after the exit).

sys.monitoring.events.C_RETURN¶

Return from any callable, except for Python functions (event occurs after the return).

sys.monitoring.events.EXCEPTION_HANDLED¶

An exception is handled.

sys.monitoring.events.INSTRUCTION¶

A VM instruction is about to be executed.

sys.monitoring.events.JUMP¶

An unconditional jump in the control flow graph is made.

sys.monitoring.events.LINE¶

An instruction is about to be executed that has a different line number from the preceding instruction.

sys.monitoring.events.PY_RESUME¶

Resumption of a Python function (for generator and coroutine functions), except for throw() calls.

sys.monitoring.events.PY_RETURN¶

Return from a Python function (occurs immediately before the return, the callee’s frame will be on the stack).

sys.monitoring.events.PY_START¶

Start of a Python function (occurs immediately after the call, the callee’s frame will be on the stack)

sys.monitoring.events.PY_THROW¶

A Python function is resumed by a throw() call.

sys.monitoring.events.PY_UNWIND¶

Exit from a Python function during exception unwinding. This includes exceptions raised directly within the function and that are allowed to continue to propagate.

sys.monitoring.events.PY_YIELD¶

Yield from a Python function (occurs immediately before the yield, the callee’s frame will be on the stack).

sys.monitoring.events.RAISE¶

An exception is raised, except those that cause a STOP_ITERATION event.

sys.monitoring.events.RERAISE¶

An exception is re-raised, for example at the end of a finally block.

sys.monitoring.events.STOP_ITERATION¶

An artificial StopIteration is raised; see the STOP_ITERATION event.

More events may be added in the future.

These events are attributes of the sys.monitoring.events namespace. Each event is represented as a power-of-2 integer constant. To define a set of events, simply bitwise OR the individual events together. For example, to specify both PY_RETURN and PY_START events, use the expression PY_RETURN | PY_START.

sys.monitoring.events.NO_EVENTS¶

An alias for 0 so users can do explicit comparisons like:

if get_events(DEBUGGER_ID) == NO_EVENTS:
    ...

Setting this event deactivates all events.

Local events¶

Local events are associated with normal execution of the program and happen at clearly defined locations. All local events can be disabled. The local events are:

Deprecated event¶

The BRANCH event is deprecated in 3.14. Using BRANCH_LEFT and BRANCH_RIGHT events will give much better performance as they can be disabled independently.

Ancillary events¶

Ancillary events can be monitored like other events, but are controlled by another event:

The C_RETURN and C_RAISE events are controlled by the CALL event. C_RETURN and C_RAISE events will only be seen if the corresponding CALL event is being monitored.

Other events¶

Other events are not necessarily tied to a specific location in the program and cannot be individually disabled.

The other events that can be monitored are:

The STOP_ITERATION event¶

PEP 380 specifies that a StopIteration exception is raised when returning a value from a generator or coroutine. However, this is a very inefficient way to return a value, so some Python implementations, notably CPython 3.12+, do not raise an exception unless it would be visible to other code.

To allow tools to monitor for real exceptions without slowing down generators and coroutines, the STOP_ITERATION event is provided. STOP_ITERATION can be locally disabled, unlike RAISE.

Note that the STOP_ITERATION event and the RAISE event for a StopIteration exception are equivalent, and are treated as interchangeable when generating events. Implementations will favor STOP_ITERATION for performance reasons, but may generate a RAISE event with a StopIteration.

Turning events on and off¶

In order to monitor an event, it must be turned on and a corresponding callback must be registered. Events can be turned on or off by setting the events either globally and/or for a particular code object. An event will trigger only once, even if it is turned on both globally and locally.

Setting events globally¶

Events can be controlled globally by modifying the set of events being monitored.

sys.monitoring.get_events(tool_id: int, /) int¶

Returns the int representing all the active events.

sys.monitoring.set_events(tool_id: int, event_set: int, /) None¶

Activates all events which are set in event_set. Raises a ValueError if tool_id is not in use.

No events are active by default.

Per code object events¶

Events can also be controlled on a per code object basis. The functions defined below which accept a types.CodeType should be prepared to accept a look-alike object from functions which are not defined in Python (see Monitoring C API).

sys.monitoring.get_local_events(tool_id: int, code: CodeType, /) int¶

Returns all the local events for code

sys.monitoring.set_local_events(tool_id: int, code: CodeType, event_set: int, /) None¶

Activates all the local events for code which are set in event_set. Raises a ValueError if tool_id is not in use.

Disabling events¶
sys.monitoring.DISABLE¶

A special value that can be returned from a callback function to disable events for the current code location.

Local events can be disabled for a specific code location by returning sys.monitoring.DISABLE from a callback function. This does not change which events are set, or any other code locations for the same event.

Disabling events for specific locations is very important for high performance monitoring. For example, a program can be run under a debugger with no overhead if the debugger disables all monitoring except for a few breakpoints.

sys.monitoring.restart_events() None¶

Enable all the events that were disabled by sys.monitoring.DISABLE for all tools.

Registering callback functions¶
sys.monitoring.register_callback(tool_id: int, event: int, func: Callable | None, /) Callable | None¶

Registers the callable func for the event with the given tool_id

If another callback was registered for the given tool_id and event, it is unregistered and returned. Otherwise register_callback() returns None.

Raises an auditing event sys.monitoring.register_callback with argument func.

Functions can be unregistered by calling sys.monitoring.register_callback(tool_id, event, None).

Callback functions can be registered and unregistered at any time.

Callbacks are called only once regardless if the event is turned on both globally and locally. As such, if an event could be turned on for both global and local events by your code then the callback needs to be written to handle either trigger.

Callback function arguments¶
sys.monitoring.MISSING¶

A special value that is passed to a callback function to indicate that there are no arguments to the call.

When an active event occurs, the registered callback function is called. Callback functions returning an object other than DISABLE will have no effect. Different events will provide the callback function with different arguments, as follows:


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4