A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.python.org/3.11/reference/../library/../howto/sorting.html below:

Sorting HOW TO — Python 3.11.13 documentation

Sorting HOW TO¶
Author:

Andrew Dalke and Raymond Hettinger

Release:

0.1

Python lists have a built-in list.sort() method that modifies the list in-place. There is also a sorted() built-in function that builds a new sorted list from an iterable.

In this document, we explore the various techniques for sorting data using Python.

Sorting Basics¶

A simple ascending sort is very easy: just call the sorted() function. It returns a new sorted list:

>>> sorted([5, 2, 3, 1, 4])
[1, 2, 3, 4, 5]

You can also use the list.sort() method. It modifies the list in-place (and returns None to avoid confusion). Usually it’s less convenient than sorted() - but if you don’t need the original list, it’s slightly more efficient.

>>> a = [5, 2, 3, 1, 4]
>>> a.sort()
>>> a
[1, 2, 3, 4, 5]

Another difference is that the list.sort() method is only defined for lists. In contrast, the sorted() function accepts any iterable.

>>> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})
[1, 2, 3, 4, 5]
Key Functions¶

Both list.sort() and sorted() have a key parameter to specify a function (or other callable) to be called on each list element prior to making comparisons.

For example, here’s a case-insensitive string comparison:

>>> sorted("This is a test string from Andrew".split(), key=str.lower)
['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']

The value of the key parameter should be a function (or other callable) that takes a single argument and returns a key to use for sorting purposes. This technique is fast because the key function is called exactly once for each input record.

A common pattern is to sort complex objects using some of the object’s indices as keys. For example:

>>> student_tuples = [
...     ('john', 'A', 15),
...     ('jane', 'B', 12),
...     ('dave', 'B', 10),
... ]
>>> sorted(student_tuples, key=lambda student: student[2])   # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

The same technique works for objects with named attributes. For example:

>>> class Student:
...     def __init__(self, name, grade, age):
...         self.name = name
...         self.grade = grade
...         self.age = age
...     def __repr__(self):
...         return repr((self.name, self.grade, self.age))

>>> student_objects = [
...     Student('john', 'A', 15),
...     Student('jane', 'B', 12),
...     Student('dave', 'B', 10),
... ]
>>> sorted(student_objects, key=lambda student: student.age)   # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
Operator Module Functions¶

The key-function patterns shown above are very common, so Python provides convenience functions to make accessor functions easier and faster. The operator module has itemgetter(), attrgetter(), and a methodcaller() function.

Using those functions, the above examples become simpler and faster:

>>> from operator import itemgetter, attrgetter

>>> sorted(student_tuples, key=itemgetter(2))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

>>> sorted(student_objects, key=attrgetter('age'))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

The operator module functions allow multiple levels of sorting. For example, to sort by grade then by age:

>>> sorted(student_tuples, key=itemgetter(1,2))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

>>> sorted(student_objects, key=attrgetter('grade', 'age'))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
Ascending and Descending¶

Both list.sort() and sorted() accept a reverse parameter with a boolean value. This is used to flag descending sorts. For example, to get the student data in reverse age order:

>>> sorted(student_tuples, key=itemgetter(2), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

>>> sorted(student_objects, key=attrgetter('age'), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
Sort Stability and Complex Sorts¶

Sorts are guaranteed to be stable. That means that when multiple records have the same key, their original order is preserved.

>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
>>> sorted(data, key=itemgetter(0))
[('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]

Notice how the two records for blue retain their original order so that ('blue', 1) is guaranteed to precede ('blue', 2).

This wonderful property lets you build complex sorts in a series of sorting steps. For example, to sort the student data by descending grade and then ascending age, do the age sort first and then sort again using grade:

>>> s = sorted(student_objects, key=attrgetter('age'))     # sort on secondary key
>>> sorted(s, key=attrgetter('grade'), reverse=True)       # now sort on primary key, descending
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

This can be abstracted out into a wrapper function that can take a list and tuples of field and order to sort them on multiple passes.

>>> def multisort(xs, specs):
...     for key, reverse in reversed(specs):
...         xs.sort(key=attrgetter(key), reverse=reverse)
...     return xs

>>> multisort(list(student_objects), (('grade', True), ('age', False)))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

The Timsort algorithm used in Python does multiple sorts efficiently because it can take advantage of any ordering already present in a dataset.

Decorate-Sort-Undecorate¶

This idiom is called Decorate-Sort-Undecorate after its three steps:

For example, to sort the student data by grade using the DSU approach:

>>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)]
>>> decorated.sort()
>>> [student for grade, i, student in decorated]               # undecorate
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

This idiom works because tuples are compared lexicographically; the first items are compared; if they are the same then the second items are compared, and so on.

It is not strictly necessary in all cases to include the index i in the decorated list, but including it gives two benefits:

Another name for this idiom is Schwartzian transform, after Randal L. Schwartz, who popularized it among Perl programmers.

Now that Python sorting provides key-functions, this technique is not often needed.

Comparison Functions¶

Unlike key functions that return an absolute value for sorting, a comparison function computes the relative ordering for two inputs.

For example, a balance scale compares two samples giving a relative ordering: lighter, equal, or heavier. Likewise, a comparison function such as cmp(a, b) will return a negative value for less-than, zero if the inputs are equal, or a positive value for greater-than.

It is common to encounter comparison functions when translating algorithms from other languages. Also, some libraries provide comparison functions as part of their API. For example, locale.strcoll() is a comparison function.

To accommodate those situations, Python provides functools.cmp_to_key to wrap the comparison function to make it usable as a key function:

sorted(words, key=cmp_to_key(strcoll))  # locale-aware sort order
Odds and Ends¶

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4