A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.python.org/3/library/../using/../library/__future__.html below:

__future__ — Future statement definitions — Python 3.13.5 documentation

__future__ — Future statement definitions¶

Source code: Lib/__future__.py

Imports of the form from __future__ import feature are called future statements. These are special-cased by the Python compiler to allow the use of new Python features in modules containing the future statement before the release in which the feature becomes standard.

While these future statements are given additional special meaning by the Python compiler, they are still executed like any other import statement and the __future__ exists and is handled by the import system the same way any other Python module would be. This design serves three purposes:

Module Contents¶

No feature description will ever be deleted from __future__. Since its introduction in Python 2.1 the following features have found their way into the language using this mechanism:

feature

optional in

mandatory in

effect

nested_scopes

2.1.0b1

2.2

PEP 227: Statically Nested Scopes

generators

2.2.0a1

2.3

PEP 255: Simple Generators

division

2.2.0a2

3.0

PEP 238: Changing the Division Operator

absolute_import

2.5.0a1

3.0

PEP 328: Imports: Multi-Line and Absolute/Relative

with_statement

2.5.0a1

2.6

PEP 343: The “with” Statement

print_function

2.6.0a2

3.0

PEP 3105: Make print a function

unicode_literals

2.6.0a2

3.0

PEP 3112: Bytes literals in Python 3000

generator_stop

3.5.0b1

3.7

PEP 479: StopIteration handling inside generators

annotations

3.7.0b1

TBD [1]

PEP 563: Postponed evaluation of annotations

class __future__._Feature¶

Each statement in __future__.py is of the form:

FeatureName = _Feature(OptionalRelease, MandatoryRelease,
                       CompilerFlag)

where, normally, OptionalRelease is less than MandatoryRelease, and both are 5-tuples of the same form as sys.version_info:

(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
 PY_MINOR_VERSION, # the 1; an int
 PY_MICRO_VERSION, # the 0; an int
 PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
 PY_RELEASE_SERIAL # the 3; an int
)
_Feature.getOptionalRelease()¶

OptionalRelease records the first release in which the feature was accepted.

_Feature.getMandatoryRelease()¶

In the case of a MandatoryRelease that has not yet occurred, MandatoryRelease predicts the release in which the feature will become part of the language.

Else MandatoryRelease records when the feature became part of the language; in releases at or after that, modules no longer need a future statement to use the feature in question, but may continue to use such imports.

MandatoryRelease may also be None, meaning that a planned feature got dropped or that it is not yet decided.

_Feature.compiler_flag¶

CompilerFlag is the (bitfield) flag that should be passed in the fourth argument to the built-in function compile() to enable the feature in dynamically compiled code. This flag is stored in the _Feature.compiler_flag attribute on _Feature instances.

See also

Future statements

How the compiler treats future imports.

PEP 236 - Back to the __future__

The original proposal for the __future__ mechanism.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4