In addition to Pydantic's built-in validation capabilities, you can leverage custom validators at the field and model levels to enforce more complex constraints and ensure the integrity of your data.
Tip
Want to quickly jump to the relevant validator section?
Field validators¶ API Documentationpydantic.functional_validators.WrapValidator
pydantic.functional_validators.PlainValidator
pydantic.functional_validators.BeforeValidator
pydantic.functional_validators.AfterValidator
pydantic.functional_validators.field_validator
In its simplest form, a field validator is a callable taking the value to be validated as an argument and returning the validated value. The callable can perform checks for specific conditions (see raising validation errors) and make changes to the validated value (coercion or mutation).
Four different types of validators can be used. They can all be defined using the annotated pattern or using the field_validator()
decorator, applied on a class method:
After validators: run after Pydantic's internal validation. They are generally more type safe and thus easier to implement.
Annotated patternDecorator
Here is an example of a validator performing a validation check, and returning the value unchanged.
from typing import Annotated
from pydantic import AfterValidator, BaseModel, ValidationError
def is_even(value: int) -> int:
if value % 2 == 1:
raise ValueError(f'{value} is not an even number')
return value # (1)!
class Model(BaseModel):
number: Annotated[int, AfterValidator(is_even)]
try:
Model(number=1)
except ValidationError as err:
print(err)
"""
1 validation error for Model
number
Value error, 1 is not an even number [type=value_error, input_value=1, input_type=int]
"""
Here is an example of a validator performing a validation check, and returning the value unchanged, this time using the field_validator()
decorator.
from pydantic import BaseModel, ValidationError, field_validator
class Model(BaseModel):
number: int
@field_validator('number', mode='after') # (1)!
@classmethod
def is_even(cls, value: int) -> int:
if value % 2 == 1:
raise ValueError(f'{value} is not an even number')
return value # (2)!
try:
Model(number=1)
except ValidationError as err:
print(err)
"""
1 validation error for Model
number
Value error, 1 is not an even number [type=value_error, input_value=1, input_type=int]
"""
'after'
is the default mode for the decorator, and can be omitted.Here is an example of a validator making changes to the validated value (no exception is raised).
Annotated patternDecorator
from typing import Annotated
from pydantic import AfterValidator, BaseModel
def double_number(value: int) -> int:
return value * 2
class Model(BaseModel):
number: Annotated[int, AfterValidator(double_number)]
print(Model(number=2))
#> number=4
from pydantic import BaseModel, field_validator
class Model(BaseModel):
number: int
@field_validator('number', mode='after') # (1)!
@classmethod
def double_number(cls, value: int) -> int:
return value * 2
print(Model(number=2))
#> number=4
'after'
is the default mode for the decorator, and can be omitted.Before validators: run before Pydantic's internal parsing and validation (e.g. coercion of a str
to an int
). These are more flexible than after validators, but they also have to deal with the raw input, which in theory could be any arbitrary object. You should also avoid mutating the value directly if you are raising a validation error later in your validator function, as the mutated value may be passed to other validators if using unions.
The value returned from this callable is then validated against the provided type annotation by Pydantic.
Annotated patternDecorator
from typing import Annotated, Any
from pydantic import BaseModel, BeforeValidator, ValidationError
def ensure_list(value: Any) -> Any: # (1)!
if not isinstance(value, list): # (2)!
return [value]
else:
return value
class Model(BaseModel):
numbers: Annotated[list[int], BeforeValidator(ensure_list)]
print(Model(numbers=2))
#> numbers=[2]
try:
Model(numbers='str')
except ValidationError as err:
print(err) # (3)!
"""
1 validation error for Model
numbers.0
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='str', input_type=str]
"""
Notice the use of Any
as a type hint for value
. Before validators take the raw input, which can be anything.
Note that you might want to check for other sequence types (such as tuples) that would normally successfully validate against the list
type. Before validators give you more flexibility, but you have to account for every possible case.
Pydantic still performs validation against the int
type, no matter if our ensure_list
validator did operations on the original input type.
from typing import Any
from pydantic import BaseModel, ValidationError, field_validator
class Model(BaseModel):
numbers: list[int]
@field_validator('numbers', mode='before')
@classmethod
def ensure_list(cls, value: Any) -> Any: # (1)!
if not isinstance(value, list): # (2)!
return [value]
else:
return value
print(Model(numbers=2))
#> numbers=[2]
try:
Model(numbers='str')
except ValidationError as err:
print(err) # (3)!
"""
1 validation error for Model
numbers.0
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='str', input_type=str]
"""
Notice the use of Any
as a type hint for value
. Before validators take the raw input, which can be anything.
Note that you might want to check for other sequence types (such as tuples) that would normally successfully validate against the list
type. Before validators give you more flexibility, but you have to account for every possible case.
Pydantic still performs validation against the int
type, no matter if our ensure_list
validator did operations on the original input type.
Plain validators: act similarly to before validators but they terminate validation immediately after returning, so no further validators are called and Pydantic does not do any of its internal validation against the field type.
Annotated patternDecorator
from typing import Annotated, Any
from pydantic import BaseModel, PlainValidator
def val_number(value: Any) -> Any:
if isinstance(value, int):
return value * 2
else:
return value
class Model(BaseModel):
number: Annotated[int, PlainValidator(val_number)]
print(Model(number=4))
#> number=8
print(Model(number='invalid')) # (1)!
#> number='invalid'
'invalid'
shouldn't validate against the int
type, Pydantic accepts the input.from typing import Any
from pydantic import BaseModel, field_validator
class Model(BaseModel):
number: int
@field_validator('number', mode='plain')
@classmethod
def val_number(cls, value: Any) -> Any:
if isinstance(value, int):
return value * 2
else:
return value
print(Model(number=4))
#> number=8
print(Model(number='invalid')) # (1)!
#> number='invalid'
'invalid'
shouldn't validate against the int
type, Pydantic accepts the input.Wrap validators: are the most flexible of all. You can run code before or after Pydantic and other validators process the input, or you can terminate validation immediately, either by returning the value early or by raising an error.
Such validators must be defined with a mandatory extra handler parameter: a callable taking the value to be validated as an argument. Internally, this handler will delegate validation of the value to Pydantic. You are free to wrap the call to the handler in a try..except
block, or not call it at all.
Annotated patternDecorator
from typing import Any
from typing import Annotated
from pydantic import BaseModel, Field, ValidationError, ValidatorFunctionWrapHandler, WrapValidator
def truncate(value: Any, handler: ValidatorFunctionWrapHandler) -> str:
try:
return handler(value)
except ValidationError as err:
if err.errors()[0]['type'] == 'string_too_long':
return handler(value[:5])
else:
raise
class Model(BaseModel):
my_string: Annotated[str, Field(max_length=5), WrapValidator(truncate)]
print(Model(my_string='abcde'))
#> my_string='abcde'
print(Model(my_string='abcdef'))
#> my_string='abcde'
from typing import Any
from typing import Annotated
from pydantic import BaseModel, Field, ValidationError, ValidatorFunctionWrapHandler, field_validator
class Model(BaseModel):
my_string: Annotated[str, Field(max_length=5)]
@field_validator('my_string', mode='wrap')
@classmethod
def truncate(cls, value: Any, handler: ValidatorFunctionWrapHandler) -> str:
try:
return handler(value)
except ValidationError as err:
if err.errors()[0]['type'] == 'string_too_long':
return handler(value[:5])
else:
raise
print(Model(my_string='abcde'))
#> my_string='abcde'
print(Model(my_string='abcdef'))
#> my_string='abcde'
Validation of default values
As mentioned in the fields documentation, default values of fields are not validated unless configured to do so, and thus custom validators will not be applied as well.
Which validator pattern to use¶While both approaches can achieve the same thing, each pattern provides different benefits.
Using the annotated pattern¶One of the key benefits of using the annotated pattern is to make validators reusable:
from typing import Annotated
from pydantic import AfterValidator, BaseModel
def is_even(value: int) -> int:
if value % 2 == 1:
raise ValueError(f'{value} is not an even number')
return value
EvenNumber = Annotated[int, AfterValidator(is_even)]
class Model1(BaseModel):
my_number: EvenNumber
class Model2(BaseModel):
other_number: Annotated[EvenNumber, AfterValidator(lambda v: v + 2)]
class Model3(BaseModel):
list_of_even_numbers: list[EvenNumber] # (1)!
It is also easier to understand which validators are applied to a type, by just looking at the field annotation.
Using the decorator pattern¶One of the key benefits of using the field_validator()
decorator is to apply the function to multiple fields:
from pydantic import BaseModel, field_validator
class Model(BaseModel):
f1: str
f2: str
@field_validator('f1', 'f2', mode='before')
@classmethod
def capitalize(cls, value: str) -> str:
return value.capitalize()
Here are a couple additional notes about the decorator usage:
'*'
as the field name argument.False
to the check_fields
argument. This is useful when the field validator is defined on a base class, and the field is expected to exist on subclasses.pydantic.functional_validators.model_validator
Validation can also be performed on the entire model's data using the model_validator()
decorator.
Three different types of model validators can be used:
After validators: run after the whole model has been validated. As such, they are defined as instance methods and can be seen as post-initialization hooks. Important note: the validated instance should be returned.
from typing_extensions import Self
from pydantic import BaseModel, model_validator
class UserModel(BaseModel):
username: str
password: str
password_repeat: str
@model_validator(mode='after')
def check_passwords_match(self) -> Self:
if self.password != self.password_repeat:
raise ValueError('Passwords do not match')
return self
Before validators: are run before the model is instantiated. These are more flexible than after validators, but they also have to deal with the raw input, which in theory could be any arbitrary object. You should also avoid mutating the value directly if you are raising a validation error later in your validator function, as the mutated value may be passed to other validators if using unions.
from typing import Any
from pydantic import BaseModel, model_validator
class UserModel(BaseModel):
username: str
@model_validator(mode='before')
@classmethod
def check_card_number_not_present(cls, data: Any) -> Any: # (1)!
if isinstance(data, dict): # (2)!
if 'card_number' in data:
raise ValueError("'card_number' should not be included")
return data
Any
as a type hint for data
. Before validators take the raw input, which can be anything.UserModel(username='...')
). However, this is not always the case. For instance, if the from_attributes
configuration value is set, you might receive an arbitrary class instance for the data
argument.Wrap validators: are the most flexible of all. You can run code before or after Pydantic and other validators process the input data, or you can terminate validation immediately, either by returning the data early or by raising an error.
import logging
from typing import Any
from typing_extensions import Self
from pydantic import BaseModel, ModelWrapValidatorHandler, ValidationError, model_validator
class UserModel(BaseModel):
username: str
@model_validator(mode='wrap')
@classmethod
def log_failed_validation(cls, data: Any, handler: ModelWrapValidatorHandler[Self]) -> Self:
try:
return handler(data)
except ValidationError:
logging.error('Model %s failed to validate with data %s', cls, data)
raise
On inheritance
A model validator defined in a base class will be called during the validation of a subclass instance.
Overriding a model validator in a subclass will override the base class' validator, and thus only the subclass' version of said validator will be called.
Raising validation errors¶To raise a validation error, three types of exceptions can be used:
ValueError
: this is the most common exception raised inside validators.AssertionError
: using the assert statement also works, but be aware that these statements are skipped when Python is run with the -O optimization flag.PydanticCustomError
: a bit more verbose, but provides extra flexibility:
from pydantic_core import PydanticCustomError
from pydantic import BaseModel, ValidationError, field_validator
class Model(BaseModel):
x: int
@field_validator('x', mode='after')
@classmethod
def validate_x(cls, v: int) -> int:
if v % 42 == 0:
raise PydanticCustomError(
'the_answer_error',
'{number} is the answer!',
{'number': v},
)
return v
try:
Model(x=42 * 2)
except ValidationError as e:
print(e)
"""
1 validation error for Model
x
84 is the answer! [type=the_answer_error, input_value=84, input_type=int]
"""
Both the field and model validators callables (in all modes) can optionally take an extra ValidationInfo
argument, providing useful extra information, such as:
'python'
or 'json'
(see the mode
property)field_name
property).For field validators, the already validated data can be accessed using the data
property. Here is an example than can be used as an alternative to the after model validator example:
from pydantic import BaseModel, ValidationInfo, field_validator
class UserModel(BaseModel):
password: str
password_repeat: str
username: str
@field_validator('password_repeat', mode='after')
@classmethod
def check_passwords_match(cls, value: str, info: ValidationInfo) -> str:
if value != info.data['password']:
raise ValueError('Passwords do not match')
return value
Warning
As validation is performed in the order fields are defined, you have to make sure you are not accessing a field that hasn't been validated yet. In the code above, for example, the username
validated value is not available yet, as it is defined after password_repeat
.
The data
property is None
for model validators.
You can pass a context object to the validation methods, which can be accessed inside the validator functions using the context
property:
from pydantic import BaseModel, ValidationInfo, field_validator
class Model(BaseModel):
text: str
@field_validator('text', mode='after')
@classmethod
def remove_stopwords(cls, v: str, info: ValidationInfo) -> str:
if isinstance(info.context, dict):
stopwords = info.context.get('stopwords', set())
v = ' '.join(w for w in v.split() if w.lower() not in stopwords)
return v
data = {'text': 'This is an example document'}
print(Model.model_validate(data)) # no context
#> text='This is an example document'
print(Model.model_validate(data, context={'stopwords': ['this', 'is', 'an']}))
#> text='example document'
Similarly, you can use a context for serialization.
Providing context when directly instantiating a modelIt is currently not possible to provide a context when directly instantiating a model (i.e. when calling Model(...)
). You can work around this through the use of a ContextVar
and a custom __init__
method:
from __future__ import annotations
from contextlib import contextmanager
from contextvars import ContextVar
from typing import Any, Generator
from pydantic import BaseModel, ValidationInfo, field_validator
_init_context_var = ContextVar('_init_context_var', default=None)
@contextmanager
def init_context(value: dict[str, Any]) -> Generator[None]:
token = _init_context_var.set(value)
try:
yield
finally:
_init_context_var.reset(token)
class Model(BaseModel):
my_number: int
def __init__(self, /, **data: Any) -> None:
self.__pydantic_validator__.validate_python(
data,
self_instance=self,
context=_init_context_var.get(),
)
@field_validator('my_number')
@classmethod
def multiply_with_context(cls, value: int, info: ValidationInfo) -> int:
if isinstance(info.context, dict):
multiplier = info.context.get('multiplier', 1)
value = value * multiplier
return value
print(Model(my_number=2))
#> my_number=2
with init_context({'multiplier': 3}):
print(Model(my_number=2))
#> my_number=6
print(Model(my_number=2))
#> my_number=2
Ordering of validators¶
When using the annotated pattern, the order in which validators are applied is defined as follows: before and wrap validators are run from right to left, and after validators are then run from left to right:
from pydantic import AfterValidator, BaseModel, BeforeValidator, WrapValidator
class Model(BaseModel):
name: Annotated[
str,
AfterValidator(runs_3rd),
AfterValidator(runs_4th),
BeforeValidator(runs_2nd),
WrapValidator(runs_1st),
]
Internally, validators defined using the decorator are converted to their annotated form counterpart and added last after the existing metadata for the field. This means that the same ordering logic applies.
Special types¶Pydantic provides a few special utilities that can be used to customize validation.
InstanceOf
can be used to validate that a value is an instance of a given class.
from pydantic import BaseModel, InstanceOf, ValidationError
class Fruit:
def __repr__(self):
return self.__class__.__name__
class Banana(Fruit): ...
class Apple(Fruit): ...
class Basket(BaseModel):
fruits: list[InstanceOf[Fruit]]
print(Basket(fruits=[Banana(), Apple()]))
#> fruits=[Banana, Apple]
try:
Basket(fruits=[Banana(), 'Apple'])
except ValidationError as e:
print(e)
"""
1 validation error for Basket
fruits.1
Input should be an instance of Fruit [type=is_instance_of, input_value='Apple', input_type=str]
"""
SkipValidation
can be used to skip validation on a field.
from pydantic import BaseModel, SkipValidation
class Model(BaseModel):
names: list[SkipValidation[str]]
m = Model(names=['foo', 'bar'])
print(m)
#> names=['foo', 'bar']
m = Model(names=['foo', 123]) # (1)!
print(m)
#> names=['foo', 123]
PydanticUseDefault
can be used to notify Pydantic that the default value should be used.
from typing import Annotated, Any
from pydantic_core import PydanticUseDefault
from pydantic import BaseModel, BeforeValidator
def default_if_none(value: Any) -> Any:
if value is None:
raise PydanticUseDefault()
return value
class Model(BaseModel):
name: Annotated[str, BeforeValidator(default_if_none)] = 'default_name'
print(Model(name=None))
#> name='default_name'
When using before, plain or wrap field validators, the accepted input type may be different from the field annotation.
Consider the following example:
from typing import Any
from pydantic import BaseModel, field_validator
class Model(BaseModel):
value: str
@field_validator('value', mode='before')
@classmethod
def cast_ints(cls, value: Any) -> Any:
if isinstance(value, int):
return str(value)
else:
return value
print(Model(value='a'))
#> value='a'
print(Model(value=1))
#> value='1'
While the type hint for value
is str
, the cast_ints
validator also allows integers. To specify the correct input type, the json_schema_input_type
argument can be provided:
from typing import Any, Union
from pydantic import BaseModel, field_validator
class Model(BaseModel):
value: str
@field_validator(
'value', mode='before', json_schema_input_type=Union[int, str]
)
@classmethod
def cast_ints(cls, value: Any) -> Any:
if isinstance(value, int):
return str(value)
else:
return value
print(Model.model_json_schema()['properties']['value'])
#> {'anyOf': [{'type': 'integer'}, {'type': 'string'}], 'title': 'Value'}
As a convenience, Pydantic will use the field type if the argument is not provided (unless you are using a plain validator, in which case json_schema_input_type
defaults to Any
as the field type is completely discarded).
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4