A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.jax.dev/en/latest/_autosummary/jax.numpy.vstack.html below:

jax.numpy.vstack — JAX documentation

jax.numpy.vstack#
jax.numpy.vstack(tup, dtype=None)[source]#

Vertically stack arrays.

JAX implementation of numpy.vstack().

For arrays of two or more dimensions, this is equivalent to jax.numpy.concatenate() with axis=0.

Parameters:
  • tup (np.ndarray | Array | Sequence[ArrayLike]) – a sequence of arrays to stack; each must have the same shape along all but the first axis. If a single array is given it will be treated equivalently to tup = unstack(tup), but the implementation will avoid explicit unstacking.

  • dtype (DTypeLike | None | None) – optional dtype of the resulting array. If not specified, the dtype will be determined via type promotion rules described in Type promotion semantics.

Returns:

the stacked result.

Return type:

Array

Examples

Scalar values:

>>> jnp.vstack([1, 2, 3])
Array([[1],
       [2],
       [3]], dtype=int32, weak_type=True)

1D arrays:

>>> x = jnp.arange(4)
>>> y = jnp.ones(4)
>>> jnp.vstack([x, y])
Array([[0., 1., 2., 3.],
       [1., 1., 1., 1.]], dtype=float32)

2D arrays:

>>> x = x.reshape(1, 4)
>>> y = y.reshape(1, 4)
>>> jnp.vstack([x, y])
Array([[0., 1., 2., 3.],
       [1., 1., 1., 1.]], dtype=float32)

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.3