Compute the variance along a given axis.
JAX implementation of numpy.var()
.
a (ArrayLike) – input array.
axis (Axis) – optional, int or sequence of ints, default=None. Axis along which the variance is computed. If None, variance is computed along all the axes.
dtype (DTypeLike | None) – The type of the output array. Default=None.
ddof (int) – int, default=0. Degrees of freedom. The divisor in the variance computation is N-ddof
, N
is number of elements along given axis.
keepdims (bool) – bool, default=False. If true, reduced axes are left in the result with size 1.
where (ArrayLike | None) – optional, boolean array, default=None. The elements to be used in the variance. Array should be broadcast compatible to the input.
correction (int | float | None) – int or float, default=None. Alternative name for ddof
. Both ddof and correction can’t be provided simultaneously.
out (None) – Unused by JAX.
An array of the variance along the given axis.
See also
jax.numpy.mean()
: Compute the mean of array elements over a given axis.
jax.numpy.std()
: Compute the standard deviation of array elements over given axis.
jax.numpy.nanvar()
: Compute the variance along a given axis, ignoring NaNs values.
jax.numpy.nanstd()
: Computed the standard deviation of a given axis, ignoring NaN values.
Examples
By default, jnp.var
computes the variance along all axes.
>>> x = jnp.array([[1, 3, 4, 2], ... [5, 2, 6, 3], ... [8, 4, 2, 9]]) >>> with jnp.printoptions(precision=2, suppress=True): ... jnp.var(x) Array(5.74, dtype=float32)
If axis=1
, variance is computed along axis 1.
>>> jnp.var(x, axis=1) Array([1.25 , 2.5 , 8.1875], dtype=float32)
To preserve the dimensions of input, you can set keepdims=True
.
>>> jnp.var(x, axis=1, keepdims=True) Array([[1.25 ], [2.5 ], [8.1875]], dtype=float32)
If ddof=1
:
>>> with jnp.printoptions(precision=2, suppress=True): ... print(jnp.var(x, axis=1, keepdims=True, ddof=1)) [[ 1.67] [ 3.33] [10.92]]
To include specific elements of the array to compute variance, you can use where
.
>>> where = jnp.array([[1, 0, 1, 0], ... [0, 1, 1, 0], ... [1, 1, 1, 0]], dtype=bool) >>> with jnp.printoptions(precision=2, suppress=True): ... print(jnp.var(x, axis=1, keepdims=True, where=where)) [[2.25] [4. ] [6.22]]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4