A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.jax.dev/en/latest/_autosummary/jax.numpy.tensordot.html below:

jax.numpy.tensordot — JAX documentation

jax.numpy.tensordot#
jax.numpy.tensordot(a, b, axes=2, *, precision=None, preferred_element_type=None)[source]#

Compute the tensor dot product of two N-dimensional arrays.

JAX implementation of numpy.linalg.tensordot().

Parameters:
Returns:

array containing the tensor dot product of the inputs

Return type:

Array

Examples

>>> x1 = jnp.arange(24.).reshape(2, 3, 4)
>>> x2 = jnp.ones((3, 4, 5))
>>> jnp.tensordot(x1, x2)
Array([[ 66.,  66.,  66.,  66.,  66.],
       [210., 210., 210., 210., 210.]], dtype=float32)

Equivalent result when specifying the axes as explicit sequences:

>>> jnp.tensordot(x1, x2, axes=([1, 2], [0, 1]))
Array([[ 66.,  66.,  66.,  66.,  66.],
       [210., 210., 210., 210., 210.]], dtype=float32)

Equivalent result via einsum():

>>> jnp.einsum('ijk,jkm->im', x1, x2)
Array([[ 66.,  66.,  66.,  66.,  66.],
       [210., 210., 210., 210., 210.]], dtype=float32)

Setting axes=1 for two-dimensional inputs is equivalent to a matrix multiplication:

>>> x1 = jnp.array([[1, 2],
...                 [3, 4]])
>>> x2 = jnp.array([[1, 2, 3],
...                 [4, 5, 6]])
>>> jnp.linalg.tensordot(x1, x2, axes=1)
Array([[ 9, 12, 15],
       [19, 26, 33]], dtype=int32)
>>> x1 @ x2
Array([[ 9, 12, 15],
       [19, 26, 33]], dtype=int32)

Setting axes=0 for one-dimensional inputs is equivalent to outer():

>>> x1 = jnp.array([1, 2])
>>> x2 = jnp.array([1, 2, 3])
>>> jnp.linalg.tensordot(x1, x2, axes=0)
Array([[1, 2, 3],
       [2, 4, 6]], dtype=int32)
>>> jnp.outer(x1, x2)
Array([[1, 2, 3],
       [2, 4, 6]], dtype=int32)

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.3