Compute the set difference of two 1D arrays.
JAX implementation of numpy.setdiff1d()
.
Because the size of the output of setdiff1d
is data-dependent, the function is not typically compatible with jit()
and other JAX transformations. The JAX version adds the optional size
argument which must be specified statically for jnp.setdiff1d
to be used in such contexts.
ar1 (ArrayLike) – first array of elements to be differenced.
ar2 (ArrayLike) – second array of elements to be differenced.
assume_unique (bool) – if True, assume the input arrays contain unique values. This allows a more efficient implementation, but if assume_unique
is True and the input arrays contain duplicates, the behavior is undefined. default: False.
size (int | None) – if specified, return only the first size
sorted elements. If there are fewer elements than size
indicates, the return value will be padded with fill_value
.
fill_value (ArrayLike | None) – when size
is specified and there are fewer than the indicated number of elements, fill the remaining entries fill_value
. Defaults to the minimum value.
i.e. the elements in ar1
that are not contained in ar2
.
an array containing the set difference of elements in the input array
Examples
Computing the set difference of two arrays:
>>> ar1 = jnp.array([1, 2, 3, 4]) >>> ar2 = jnp.array([3, 4, 5, 6]) >>> jnp.setdiff1d(ar1, ar2) Array([1, 2], dtype=int32)
Because the output shape is dynamic, this will fail under jit()
and other transformations:
>>> jax.jit(jnp.setdiff1d)(ar1, ar2) Traceback (most recent call last): ... ConcretizationTypeError: Abstract tracer value encountered where concrete value is expected: traced array with shape int32[4]. The error occurred while tracing the function setdiff1d at /Users/vanderplas/github/jax-ml/jax/jax/_src/numpy/setops.py:64 for jit. This concrete value was not available in Python because it depends on the value of the argument ar1.
In order to ensure statically-known output shapes, you can pass a static size
argument:
>>> jit_setdiff1d = jax.jit(jnp.setdiff1d, static_argnames=['size']) >>> jit_setdiff1d(ar1, ar2, size=2) Array([1, 2], dtype=int32)
If size
is too small, the difference is truncated:
>>> jit_setdiff1d(ar1, ar2, size=1) Array([1], dtype=int32)
If size
is too large, then the output is padded with fill_value
:
>>> jit_setdiff1d(ar1, ar2, size=4, fill_value=0) Array([1, 2, 0, 0], dtype=int32)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4