Concatenate slices, scalars and array-like objects along the first axis.
LAX-backend implementation of numpy.r_
.
See also
jnp.c_
: Concatenates slices, scalars and array-like objects along the last axis.
Examples
Passing slices in the form [start:stop:step]
generates jnp.arange
objects:
>>> jnp.r_[-1:5:1, 0, 0, jnp.array([1,2,3])] Array([-1, 0, 1, 2, 3, 4, 0, 0, 1, 2, 3], dtype=int32)
An imaginary value for step
will create a jnp.linspace
object instead, which includes the right endpoint:
>>> jnp.r_[-1:1:6j, 0, jnp.array([1,2,3])] Array([-1. , -0.6 , -0.20000002, 0.20000005, 0.6 , 1. , 0. , 1. , 2. , 3. ], dtype=float32)
Use a string directive of the form "axis,dims,trans1d"
as the first argument to specify concatenation axis, minimum number of dimensions, and the position of the upgraded array’s original dimensions in the resulting array’s shape tuple:
>>> jnp.r_['0,2', [1,2,3], [4,5,6]] # concatenate along first axis, 2D output Array([[1, 2, 3], [4, 5, 6]], dtype=int32)
>>> jnp.r_['0,2,0', [1,2,3], [4,5,6]] # push last input axis to the front Array([[1], [2], [3], [4], [5], [6]], dtype=int32)
Negative values for trans1d
offset the last axis towards the start of the shape tuple:
>>> jnp.r_['0,2,-2', [1,2,3], [4,5,6]] Array([[1], [2], [3], [4], [5], [6]], dtype=int32)
Use the special directives "r"
or "c"
as the first argument on flat inputs to create an array with an extra row or column axis, respectively:
>>> jnp.r_['r',[1,2,3], [4,5,6]] Array([[1, 2, 3, 4, 5, 6]], dtype=int32)
>>> jnp.r_['c',[1,2,3], [4,5,6]] Array([[1], [2], [3], [4], [5], [6]], dtype=int32)
For higher-dimensional inputs (dim >= 2
), both directives "r"
and "c"
give the same result.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.3