Calculate element-wise base x1
exponential of x2
.
JAX implementation of numpy.power
.
x1 (ArrayLike) – scalar or array. Specifies the bases.
x2 (ArrayLike) – scalar or array. Specifies the exponent. x1
and x2
should either have same shape or be broadcast compatible.
An array containing the base x1
exponentials of x2
with same dtype as input.
Note
When x2
is a concrete integer scalar, jnp.power
lowers to jax.lax.integer_pow()
.
When x2
is a traced scalar or an array, jnp.power
lowers to jax.lax.pow()
.
jnp.power
raises a TypeError
for integer type raised to a concrete negative integer power. For a non-concrete power, the operation is invalid and the returned value is implementation-defined.
jnp.power
returns nan
for negative value raised to the power of non-integer values.
See also
jax.lax.pow()
: Computes element-wise power, \(x^y\).
jax.lax.integer_pow()
: Computes element-wise power \(x^y\), where \(y\) is a fixed integer.
jax.numpy.float_power()
: Computes the first array raised to the power of second array, element-wise, by promoting to the inexact dtype.
jax.numpy.pow()
: Computes the first array raised to the power of second array, element-wise.
Examples
Inputs with scalar integers:
>>> jnp.power(4, 3) Array(64, dtype=int32, weak_type=True)
Inputs with same shape:
>>> x1 = jnp.array([2, 4, 5]) >>> x2 = jnp.array([3, 0.5, 2]) >>> jnp.power(x1, x2) Array([ 8., 2., 25.], dtype=float32)
Inputs with broadcast compatibility:
>>> x3 = jnp.array([-2, 3, 1]) >>> x4 = jnp.array([[4, 1, 6], ... [1.3, 3, 5]]) >>> jnp.power(x3, x4) Array([[16., 3., 1.], [nan, 27., 1.]], dtype=float32)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4