Return the minimum of the array elements along a given axis, ignoring NaNs.
JAX implementation of numpy.nanmin()
.
a (ArrayLike) – Input array.
axis (Axis) – int or sequence of ints, default=None. Axis along which the minimum is computed. If None, the minimum is computed along the flattened array.
keepdims (bool) – bool, default=False. If True, reduced axes are left in the result with size 1.
initial (ArrayLike | None) – int or array, default=None. Initial value for the minimum.
where (ArrayLike | None) – array of boolean dtype, default=None. The elements to be used in the minimum. Array should be broadcast compatible to the input. initial
must be specified when where
is used.
out (None) – Unused by JAX.
An array of minimum values along the given axis, ignoring NaNs. If all values are NaNs along the given axis, returns nan
.
See also
jax.numpy.nanmax()
: Compute the maximum of array elements along a given axis, ignoring NaNs.
jax.numpy.nansum()
: Compute the sum of array elements along a given axis, ignoring NaNs.
jax.numpy.nanprod()
: Compute the product of array elements along a given axis, ignoring NaNs.
jax.numpy.nanmean()
: Compute the mean of array elements along a given axis, ignoring NaNs.
Examples
By default, jnp.nanmin
computes the minimum of elements along the flattened array.
>>> nan = jnp.nan >>> x = jnp.array([[1, nan, 4, 5], ... [nan, -2, nan, -4], ... [2, 1, 3, nan]]) >>> jnp.nanmin(x) Array(-4., dtype=float32)
If axis=1
, the maximum will be computed along axis 1.
>>> jnp.nanmin(x, axis=1) Array([ 1., -4., 1.], dtype=float32)
If keepdims=True
, ndim
of the output will be same of that of the input.
>>> jnp.nanmin(x, axis=1, keepdims=True) Array([[ 1.], [-4.], [ 1.]], dtype=float32)
To include only specific elements in computing the maximum, you can use where
. It can either have same dimension as input
>>> where=jnp.array([[0, 0, 1, 0], ... [0, 0, 1, 1], ... [1, 1, 1, 0]], dtype=bool) >>> jnp.nanmin(x, axis=1, keepdims=True, initial=0, where=where) Array([[ 0.], [-4.], [ 0.]], dtype=float32)
or must be broadcast compatible with input.
>>> where = jnp.array([[False], ... [True], ... [False]]) >>> jnp.nanmin(x, axis=0, keepdims=True, initial=0, where=where) Array([[ 0., -2., 0., -4.]], dtype=float32)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.3