Return the maximum of the array elements along a given axis, ignoring NaNs.
JAX implementation of numpy.nanmax()
.
a (ArrayLike) – Input array.
axis (Axis) – int or sequence of ints, default=None. Axis along which the maximum is computed. If None, the maximum is computed along the flattened array.
keepdims (bool) – bool, default=False. If True, reduced axes are left in the result with size 1.
initial (ArrayLike | None) – int or array, default=None. Initial value for the maximum.
where (ArrayLike | None) – array of boolean dtype, default=None. The elements to be used in the maximum. Array should be broadcast compatible to the input. initial
must be specified when where
is used.
out (None) – Unused by JAX.
An array of maximum values along the given axis, ignoring NaNs. If all values are NaNs along the given axis, returns nan
.
See also
jax.numpy.nanmin()
: Compute the minimum of array elements along a given axis, ignoring NaNs.
jax.numpy.nansum()
: Compute the sum of array elements along a given axis, ignoring NaNs.
jax.numpy.nanprod()
: Compute the product of array elements along a given axis, ignoring NaNs.
jax.numpy.nanmean()
: Compute the mean of array elements along a given axis, ignoring NaNs.
Examples
By default, jnp.nanmax
computes the maximum of elements along the flattened array.
>>> nan = jnp.nan >>> x = jnp.array([[8, nan, 4, 6], ... [nan, -2, nan, -4], ... [-2, 1, 7, nan]]) >>> jnp.nanmax(x) Array(8., dtype=float32)
If axis=1
, the maximum will be computed along axis 1.
>>> jnp.nanmax(x, axis=1) Array([ 8., -2., 7.], dtype=float32)
If keepdims=True
, ndim
of the output will be same of that of the input.
>>> jnp.nanmax(x, axis=1, keepdims=True) Array([[ 8.], [-2.], [ 7.]], dtype=float32)
To include only specific elements in computing the maximum, you can use where
. It can either have same dimension as input
>>> where=jnp.array([[0, 0, 1, 0], ... [0, 0, 1, 1], ... [1, 1, 1, 0]], dtype=bool) >>> jnp.nanmax(x, axis=1, keepdims=True, initial=0, where=where) Array([[4.], [0.], [7.]], dtype=float32)
or must be broadcast compatible with input.
>>> where = jnp.array([[True], ... [False], ... [False]]) >>> jnp.nanmax(x, axis=0, keepdims=True, initial=0, where=where) Array([[8., 0., 4., 6.]], dtype=float32)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.3