Cumulative sum of elements along an axis, ignoring NaN values.
JAX implementation of numpy.nancumsum()
.
a (ArrayLike) – N-dimensional array to be accumulated.
axis (int | None) – integer axis along which to accumulate. If None (default), then array will be flattened and accumulated along the flattened axis.
dtype (DTypeLike | None) – optionally specify the dtype of the output. If not specified, then the output dtype will match the input dtype.
out (None) – unused by JAX
An array containing the accumulated sum along the given axis.
Examples
>>> x = jnp.array([[1., 2., jnp.nan], ... [4., jnp.nan, 6.]])
The standard cumulative sum will propagate NaN values:
>>> jnp.cumsum(x) Array([ 1., 3., nan, nan, nan, nan], dtype=float32)
nancumsum()
will ignore NaN values, effectively replacing them with zeros:
>>> jnp.nancumsum(x) Array([ 1., 3., 3., 7., 7., 13.], dtype=float32)
Cumulative sum along axis 1:
>>> jnp.nancumsum(x, axis=1) Array([[ 1., 3., 3.], [ 4., 4., 10.]], dtype=float32)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4