Return the minimum of array elements along a given axis.
JAX implementation of numpy.min()
.
a (ArrayLike) – Input array.
axis (Axis) – int or array, default=None. Axis along which the minimum to be computed. If None, the minimum is computed along all the axes.
keepdims (bool) – bool, default=False. If true, reduced axes are left in the result with size 1.
initial (ArrayLike | None) – int or array, Default=None. Initial value for the minimum.
where (ArrayLike | None) – int or array, default=None. The elements to be used in the minimum. Array should be broadcast compatible to the input. initial
must be specified when where
is used.
out (None) – Unused by JAX.
An array of minimum values along the given axis.
See also
jax.numpy.max()
: Compute the maximum of array elements along a given axis.
jax.numpy.sum()
: Compute the sum of array elements along a given axis.
jax.numpy.prod()
: Compute the product of array elements along a given axis.
Examples
By default, the minimum is computed along all the axes.
>>> x = jnp.array([[2, 5, 1, 6], ... [3, -7, -2, 4], ... [8, -4, 1, -3]]) >>> jnp.min(x) Array(-7, dtype=int32)
If axis=1
, the minimum is computed along axis 1.
>>> jnp.min(x, axis=1) Array([ 1, -7, -4], dtype=int32)
If keepdims=True
, ndim
of the output will be same of that of the input.
>>> jnp.min(x, axis=1, keepdims=True) Array([[ 1], [-7], [-4]], dtype=int32)
To include only specific elements in computing the minimum, you can use where
. where
can either have same dimension as input.
>>> where=jnp.array([[1, 0, 1, 0], ... [0, 0, 1, 1], ... [1, 1, 1, 0]], dtype=bool) >>> jnp.min(x, axis=1, keepdims=True, initial=0, where=where) Array([[ 0], [-2], [-4]], dtype=int32)
or must be broadcast compatible with input.
>>> where = jnp.array([[False], ... [False], ... [False]]) >>> jnp.min(x, axis=0, keepdims=True, initial=0, where=where) Array([[0, 0, 0, 0]], dtype=int32)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4