A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.jax.dev/en/latest/_autosummary/jax.numpy.linalg.svd.html below:

jax.numpy.linalg.svd — JAX documentation

jax.numpy.linalg.svd#
jax.numpy.linalg.svd(a, full_matrices=True, compute_uv=True, hermitian=False, subset_by_index=None)[source]#

Compute the singular value decomposition.

JAX implementation of numpy.linalg.svd(), implemented in terms of jax.lax.linalg.svd().

The SVD of a matrix A is given by

\[A = U\Sigma V^H\]

Parameters:
  • a (ArrayLike) – input array, of shape (..., N, M)

  • full_matrices (bool) – if True (default) compute the full matrices; i.e. u and vh have shape (..., N, N) and (..., M, M). If False, then the shapes are (..., N, K) and (..., K, M) with K = min(N, M).

  • compute_uv (bool) – if True (default), return the full SVD (u, s, vh). If False then return only the singular values s.

  • hermitian (bool) – if True, assume the matrix is hermitian, which allows for a more efficient implementation (default=False)

  • subset_by_index (tuple[int, int] | None) – (TPU-only) Optional 2-tuple [start, end] indicating the range of indices of singular values to compute. For example, if [n-2, n] then svd computes the two largest singular values and their singular vectors. Only compatible with full_matrices=False.

Returns:

A tuple of arrays (u, s, vh) if compute_uv is True, otherwise the array s.

  • u: left singular vectors of shape (..., N, N) if full_matrices is True or (..., N, K) otherwise.

  • s: singular values of shape (..., K)

  • vh: conjugate-transposed right singular vectors of shape (..., M, M) if full_matrices is True or (..., K, M) otherwise.

where K = min(N, M).

Return type:

Array | SVDResult

Examples

Consider the SVD of a small real-valued array:

>>> x = jnp.array([[1., 2., 3.],
...                [6., 5., 4.]])
>>> u, s, vt = jnp.linalg.svd(x, full_matrices=False)
>>> s  
Array([9.361919 , 1.8315067], dtype=float32)

The singular vectors are in the columns of u and v = vt.T. These vectors are orthonormal, which can be demonstrated by comparing the matrix product with the identity matrix:

>>> jnp.allclose(u.T @ u, jnp.eye(2), atol=1E-5)
Array(True, dtype=bool)
>>> v = vt.T
>>> jnp.allclose(v.T @ v, jnp.eye(2), atol=1E-5)
Array(True, dtype=bool)

Given the SVD, x can be reconstructed via matrix multiplication:

>>> x_reconstructed = u @ jnp.diag(s) @ vt
>>> jnp.allclose(x_reconstructed, x)
Array(True, dtype=bool)

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.3