Compute the eigenvalues of a general matrix.
JAX implementation of numpy.linalg.eigvals()
.
a (ArrayLike) – array of shape (..., M, M)
for which to compute the eigenvalues.
An array of shape (..., M)
containing the eigenvalues.
Notes
This differs from numpy.linalg.eigvals()
in that the return type of jax.numpy.linalg.eigvals()
is always complex64 for 32-bit input, and complex128 for 64-bit input.
At present, non-symmetric eigendecomposition is only implemented on the CPU backend.
Examples
>>> a = jnp.array([[1., 2.], ... [2., 1.]]) >>> w = jnp.linalg.eigvals(a) >>> with jnp.printoptions(precision=2): ... w Array([ 3.+0.j, -1.+0.j], dtype=complex64)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4