Compute the eigenvalues and eigenvectors of a square array.
JAX implementation of numpy.linalg.eig()
.
a (ArrayLike) – array of shape (..., M, M)
for which to compute the eigenvalues and vectors.
A tuple (eigenvalues, eigenvectors)
with
eigenvalues
: an array of shape (..., M)
containing the eigenvalues.
eigenvectors
: an array of shape (..., M, M)
, where column v[:, i]
is the eigenvector corresponding to the eigenvalue w[i]
.
Notes
This differs from numpy.linalg.eig()
in that the return type of jax.numpy.linalg.eig()
is always complex64 for 32-bit input, and complex128 for 64-bit input.
At present, non-symmetric eigendecomposition is only implemented on the CPU and GPU backends. For more details about the GPU implementation, see the documentation for jax.lax.linalg.eig()
.
Examples
>>> a = jnp.array([[1., 2.], ... [2., 1.]]) >>> w, v = jnp.linalg.eig(a) >>> with jax.numpy.printoptions(precision=4): ... w Array([ 3.+0.j, -1.+0.j], dtype=complex64) >>> v Array([[ 0.70710677+0.j, -0.70710677+0.j], [ 0.70710677+0.j, 0.70710677+0.j]], dtype=complex64)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4