A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.jax.dev/en/latest/_autosummary/jax.numpy.linalg.eig.html below:

jax.numpy.linalg.eig — JAX documentation

jax.numpy.linalg.eig#
jax.numpy.linalg.eig(a)[source]#

Compute the eigenvalues and eigenvectors of a square array.

JAX implementation of numpy.linalg.eig().

Parameters:

a (ArrayLike) – array of shape (..., M, M) for which to compute the eigenvalues and vectors.

Returns:

A tuple (eigenvalues, eigenvectors) with

  • eigenvalues: an array of shape (..., M) containing the eigenvalues.

  • eigenvectors: an array of shape (..., M, M), where column v[:, i] is the eigenvector corresponding to the eigenvalue w[i].

Return type:

tuple[Array, Array]

Notes

Examples

>>> a = jnp.array([[1., 2.],
...                [2., 1.]])
>>> w, v = jnp.linalg.eig(a)
>>> with jax.numpy.printoptions(precision=4):
...   w
Array([ 3.+0.j, -1.+0.j], dtype=complex64)
>>> v
Array([[ 0.70710677+0.j, -0.70710677+0.j],
       [ 0.70710677+0.j,  0.70710677+0.j]], dtype=complex64)

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4