A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.espressif.com/projects/esp-dl/en/latest/tutorials/how_to_deploy_yolo11n.html below:

Website Navigation


How to deploy YOLO11n -

How to deploy YOLO11n

[中文]

In this tutorial, we will introduce how to quantize a pre-trained YOLO11n model using ESP-PPQ and deploy the quantized YOLO11n model using ESP-DL.

Preparation
  1. 安装 ESP_IDF

  2. 安装 ESP_PPQ

Model quantization Pre-trained Model

You can download pre-trained yolo11n model from Ultralytics release.

Currently, ESP-PPQ supports ONNX, PyTorch, and TensorFlow models. During the quantization process, PyTorch and TensorFlow models are first converted to ONNX models, so the pre-trained yolo11n model needs to be converted to an ONNX model.

Specificially, refer to the script export_onnx.py to convert the pre-trained yolo11n model to an ONNX model.

In the srcipt, we have overridden the forward method of the Detect class, which offers following advantages:

Calibration Dataset

The calibration dataset needs to match the input format of the model. The calibration dataset should cover all possible input scenarios to better quantize the model. Here, the calibration dataset used in this example is calib_yolo11n.

8bit default configuration quantization

Quantization settings

target="esp32p4"
num_of_bits=8
batch_size=32
quant_setting = QuantizationSettingFactory.espdl_setting() # default setting

Quantization results

Layer                                        | NOISE:SIGNAL POWER RATIO
/model.10/m/m.0/ffn/ffn.1/conv/Conv:         | ████████████████████ | 36.008%
/model.10/m/m.0/attn/proj/conv/Conv:         | ████████████████     | 28.705%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | █████████████        | 22.865%
/model.23/cv2.2/cv2.2.0/conv/Conv:           | ████████████         | 21.718%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | ████████████         | 21.624%
/model.23/cv2.2/cv2.2.1/conv/Conv:           | ████████████         | 21.392%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | ████████████         | 21.224%
/model.22/m.0/cv2/conv/Conv:                 | ███████████          | 19.763%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | ███████████          | 19.436%
/model.22/m.0/cv3/conv/Conv:                 | ███████████          | 19.378%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | ██████████           | 18.913%
/model.22/m.0/m/m.1/cv2/conv/Conv:           | ██████████           | 18.645%
/model.22/cv2/conv/Conv:                     | ██████████           | 18.628%
/model.23/cv2.1/cv2.1.1/conv/Conv:           | ██████████           | 17.980%
/model.8/m.0/cv2/conv/Conv:                  | █████████            | 16.247%
/model.23/cv2.0/cv2.0.1/conv/Conv:           | █████████            | 15.602%
/model.10/m/m.0/attn/qkv/conv/Conv:          | ████████             | 14.666%
/model.10/m/m.0/attn/pe/conv/Conv:           | ████████             | 14.556%
/model.23/cv2.1/cv2.1.0/conv/Conv:           | ████████             | 14.302%
/model.22/cv1/conv/Conv:                     | ████████             | 13.921%
/model.10/m/m.0/attn/MatMul_1:               | ████████             | 13.905%
/model.10/cv1/conv/Conv:                     | ███████              | 13.494%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | ██████               | 11.800%
/model.19/m.0/cv2/conv/Conv:                 | ██████               | 11.515%
/model.22/m.0/m/m.0/cv2/conv/Conv:           | ██████               | 11.286%
/model.20/conv/Conv:                         | ██████               | 10.930%
/model.13/m.0/cv2/conv/Conv:                 | ██████               | 10.882%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | ██████               | 10.692%
/model.23/cv2.2/cv2.2.2/Conv:                | ██████               | 10.113%
/model.10/cv2/conv/Conv:                     | █████                | 9.720%
/model.8/cv2/conv/Conv:                      | █████                | 9.598%
/model.8/m.0/cv1/conv/Conv:                  | █████                | 9.470%
/model.19/cv2/conv/Conv:                     | █████                | 9.314%
/model.22/m.0/m/m.0/cv1/conv/Conv:           | █████                | 9.068%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | █████                | 9.065%
/model.8/cv1/conv/Conv:                      | █████                | 9.051%
/model.8/m.0/cv3/conv/Conv:                  | █████                | 9.044%
/model.6/m.0/cv2/conv/Conv:                  | █████                | 8.811%
/model.22/m.0/m/m.1/cv1/conv/Conv:           | █████                | 8.781%
/model.13/cv2/conv/Conv:                     | █████                | 8.687%
/model.8/m.0/m/m.0/cv1/conv/Conv:            | █████                | 8.503%
/model.8/m.0/m/m.0/cv2/conv/Conv:            | █████                | 8.470%
/model.19/cv1/conv/Conv:                     | ████                 | 8.199%
/model.10/m/m.0/attn/MatMul:                 | ████                 | 8.117%
/model.8/m.0/m/m.1/cv1/conv/Conv:            | ████                 | 7.964%
/model.13/cv1/conv/Conv:                     | ████                 | 7.734%
/model.19/m.0/cv1/conv/Conv:                 | ████                 | 7.661%
/model.22/m.0/cv1/conv/Conv:                 | ████                 | 7.490%
/model.13/m.0/cv1/conv/Conv:                 | ████                 | 7.162%
/model.8/m.0/m/m.1/cv2/conv/Conv:            | ████                 | 7.145%
/model.23/cv2.0/cv2.0.0/conv/Conv:           | ████                 | 7.041%
/model.23/cv2.1/cv2.1.2/Conv:                | ████                 | 6.917%
/model.23/cv2.0/cv2.0.2/Conv:                | ████                 | 6.778%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | ████                 | 6.641%
/model.17/conv/Conv:                         | ███                  | 6.125%
/model.16/m.0/cv2/conv/Conv:                 | ███                  | 5.937%
/model.6/cv2/conv/Conv:                      | ███                  | 5.838%
/model.6/m.0/cv3/conv/Conv:                  | ███                  | 5.832%
/model.6/cv1/conv/Conv:                      | ███                  | 5.688%
/model.7/conv/Conv:                          | ███                  | 5.612%
/model.9/cv2/conv/Conv:                      | ███                  | 5.367%
/model.10/m/m.0/ffn/ffn.0/conv/Conv:         | ███                  | 5.158%
/model.6/m.0/m/m.0/cv1/conv/Conv:            | ███                  | 5.143%
/model.16/m.0/cv1/conv/Conv:                 | ███                  | 5.137%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | ███                  | 5.087%
/model.16/cv2/conv/Conv:                     | ███                  | 4.989%
/model.2/cv2/conv/Conv:                      | ██                   | 4.547%
/model.6/m.0/m/m.0/cv2/conv/Conv:            | ██                   | 4.441%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | ██                   | 4.343%
/model.3/conv/Conv:                          | ██                   | 4.304%
/model.6/m.0/m/m.1/cv1/conv/Conv:            | ██                   | 4.006%
/model.5/conv/Conv:                          | ██                   | 3.932%
/model.6/m.0/cv1/conv/Conv:                  | ██                   | 3.837%
/model.4/cv1/conv/Conv:                      | ██                   | 3.687%
/model.2/cv1/conv/Conv:                      | ██                   | 3.565%
/model.4/cv2/conv/Conv:                      | ██                   | 3.559%
/model.16/cv1/conv/Conv:                     | ██                   | 3.107%
/model.2/m.0/cv2/conv/Conv:                  | ██                   | 2.882%
/model.6/m.0/m/m.1/cv2/conv/Conv:            | █                    | 2.758%
/model.4/m.0/cv1/conv/Conv:                  | █                    | 2.564%
/model.9/cv1/conv/Conv:                      | █                    | 2.017%
/model.4/m.0/cv2/conv/Conv:                  | █                    | 1.785%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | █                    | 1.327%
/model.1/conv/Conv:                          | █                    | 1.313%
/model.23/cv3.2/cv3.2.2/Conv:                | █                    | 1.155%
/model.2/m.0/cv1/conv/Conv:                  |                      | 0.727%
/model.23/cv3.1/cv3.1.2/Conv:                |                      | 0.493%
/model.23/cv3.0/cv3.0.2/Conv:                |                      | 0.282%
/model.0/conv/Conv:                          |                      | 0.159%
Analysing Layerwise quantization error:: 100%|██████████| 89/89 [03:39<00:00,  2.46s/it]
Layer                                        | NOISE:SIGNAL POWER RATIO
/model.1/conv/Conv:                          | ████████████████████ | 0.384%
/model.22/cv1/conv/Conv:                     | █████████████        | 0.247%
/model.4/cv2/conv/Conv:                      | ████████████         | 0.233%
/model.2/cv2/conv/Conv:                      | ██████████           | 0.201%
/model.0/conv/Conv:                          | ██████████           | 0.192%
/model.9/cv2/conv/Conv:                      | ████████             | 0.156%
/model.10/cv1/conv/Conv:                     | ███████              | 0.132%
/model.3/conv/Conv:                          | ██████               | 0.108%
/model.4/cv1/conv/Conv:                      | ████                 | 0.074%
/model.16/cv1/conv/Conv:                     | ███                  | 0.066%
/model.2/cv1/conv/Conv:                      | ███                  | 0.060%
/model.23/cv2.0/cv2.0.0/conv/Conv:           | ███                  | 0.052%
/model.2/m.0/cv1/conv/Conv:                  | ██                   | 0.044%
/model.6/cv1/conv/Conv:                      | ██                   | 0.033%
/model.10/m/m.0/attn/pe/conv/Conv:           | ██                   | 0.029%
/model.2/m.0/cv2/conv/Conv:                  | █                    | 0.028%
/model.22/m.0/m/m.0/cv1/conv/Conv:           | █                    | 0.023%
/model.16/cv2/conv/Conv:                     | █                    | 0.021%
/model.16/m.0/cv2/conv/Conv:                 | █                    | 0.020%
/model.19/m.0/cv1/conv/Conv:                 | █                    | 0.020%
/model.4/m.0/cv1/conv/Conv:                  | █                    | 0.018%
/model.19/cv2/conv/Conv:                     | █                    | 0.017%
/model.4/m.0/cv2/conv/Conv:                  | █                    | 0.016%
/model.10/m/m.0/attn/qkv/conv/Conv:          | █                    | 0.016%
/model.19/cv1/conv/Conv:                     | █                    | 0.015%
/model.13/cv2/conv/Conv:                     | █                    | 0.015%
/model.8/cv1/conv/Conv:                      | █                    | 0.013%
/model.23/cv2.1/cv2.1.0/conv/Conv:           | █                    | 0.013%
/model.23/cv2.2/cv2.2.1/conv/Conv:           | █                    | 0.012%
/model.13/cv1/conv/Conv:                     | █                    | 0.012%
/model.10/cv2/conv/Conv:                     | █                    | 0.011%
/model.13/m.0/cv1/conv/Conv:                 | █                    | 0.011%
/model.6/cv2/conv/Conv:                      | █                    | 0.011%
/model.13/m.0/cv2/conv/Conv:                 | █                    | 0.010%
/model.5/conv/Conv:                          |                      | 0.010%
/model.19/m.0/cv2/conv/Conv:                 |                      | 0.009%
/model.6/m.0/m/m.1/cv1/conv/Conv:            |                      | 0.009%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: |                      | 0.008%
/model.23/cv2.2/cv2.2.0/conv/Conv:           |                      | 0.008%
/model.23/cv2.1/cv2.1.1/conv/Conv:           |                      | 0.008%
/model.9/cv1/conv/Conv:                      |                      | 0.008%
/model.23/cv2.0/cv2.0.1/conv/Conv:           |                      | 0.007%
/model.16/m.0/cv1/conv/Conv:                 |                      | 0.007%
/model.17/conv/Conv:                         |                      | 0.007%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: |                      | 0.007%
/model.10/m/m.0/ffn/ffn.1/conv/Conv:         |                      | 0.007%
/model.23/cv2.0/cv2.0.2/Conv:                |                      | 0.006%
/model.8/m.0/cv1/conv/Conv:                  |                      | 0.006%
/model.23/cv2.2/cv2.2.2/Conv:                |                      | 0.005%
/model.23/cv2.1/cv2.1.2/Conv:                |                      | 0.005%
/model.22/m.0/cv3/conv/Conv:                 |                      | 0.005%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: |                      | 0.005%
/model.7/conv/Conv:                          |                      | 0.005%
/model.8/cv2/conv/Conv:                      |                      | 0.004%
/model.22/cv2/conv/Conv:                     |                      | 0.004%
/model.6/m.0/cv3/conv/Conv:                  |                      | 0.004%
/model.10/m/m.0/ffn/ffn.0/conv/Conv:         |                      | 0.004%
/model.8/m.0/m/m.1/cv2/conv/Conv:            |                      | 0.004%
/model.22/m.0/m/m.1/cv1/conv/Conv:           |                      | 0.004%
/model.8/m.0/m/m.1/cv1/conv/Conv:            |                      | 0.004%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: |                      | 0.003%
/model.10/m/m.0/attn/proj/conv/Conv:         |                      | 0.003%
/model.22/m.0/m/m.0/cv2/conv/Conv:           |                      | 0.003%
/model.22/m.0/cv1/conv/Conv:                 |                      | 0.003%
/model.8/m.0/cv3/conv/Conv:                  |                      | 0.003%
/model.6/m.0/m/m.0/cv1/conv/Conv:            |                      | 0.003%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: |                      | 0.003%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: |                      | 0.002%
/model.6/m.0/m/m.1/cv2/conv/Conv:            |                      | 0.002%
/model.8/m.0/m/m.0/cv2/conv/Conv:            |                      | 0.002%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: |                      | 0.002%
/model.10/m/m.0/attn/MatMul_1:               |                      | 0.002%
/model.22/m.0/m/m.1/cv2/conv/Conv:           |                      | 0.001%
/model.6/m.0/m/m.0/cv2/conv/Conv:            |                      | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: |                      | 0.001%
/model.8/m.0/m/m.0/cv1/conv/Conv:            |                      | 0.001%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: |                      | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: |                      | 0.001%
/model.6/m.0/cv1/conv/Conv:                  |                      | 0.001%
/model.23/cv3.2/cv3.2.2/Conv:                |                      | 0.001%
/model.20/conv/Conv:                         |                      | 0.001%
/model.23/cv3.1/cv3.1.2/Conv:                |                      | 0.001%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: |                      | 0.001%
/model.6/m.0/cv2/conv/Conv:                  |                      | 0.001%
/model.23/cv3.0/cv3.0.2/Conv:                |                      | 0.000%
/model.10/m/m.0/attn/MatMul:                 |                      | 0.000%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: |                      | 0.000%
/model.8/m.0/cv2/conv/Conv:                  |                      | 0.000%
/model.22/m.0/cv2/conv/Conv:                 |                      | 0.000%

Quantization error analysis

With the same inputs, The mAP50:95 on COCO val2017 after quantization is only 30.7%, which is lower than that of the float model. There is a accuracy loss with:

We noticed that although the layer-wise errors for all layers are small, the cumulative errors in some layers are relatively large. This may be related to the complex CSP structure in the yolo11n model, where the inputs to the Concat or Add layers may have different distributions or scales. We can choose to quantize certain layers using int16 and optimize the quantization with horizontal layer split pass. For more details, please refer to the mixed-precision + horizontal layer split pass quantization test.

Mixed-Precision + Horizontal Layer Split Quantization

Spliting convolution layers or GEMM layers can reduce quantization error for better performance.

Quantization settings

from esp_ppq.api import get_target_platform
target="esp32p4"
num_of_bits=8
batch_size=32

# Quantize the following layers with 16-bits
quant_setting = QuantizationSettingFactory.espdl_setting()
quant_setting.dispatching_table.append("/model.2/cv2/conv/Conv", get_target_platform(TARGET, 16))
quant_setting.dispatching_table.append("/model.3/conv/Conv", get_target_platform(TARGET, 16))
quant_setting.dispatching_table.append("/model.4/cv2/conv/Conv", get_target_platform(TARGET, 16))

# Horizontal Layer Split Pass
quant_setting.weight_split = True
quant_setting.weight_split_setting.method = 'balance'
quant_setting.weight_split_setting.value_threshold = 1.5
quant_setting.weight_split_setting.interested_layers = ['/model.0/conv/Conv', '/model.1/conv/Conv']

Quantization results

Layer                                        | NOISE:SIGNAL POWER RATIO
/model.10/m/m.0/ffn/ffn.1/conv/Conv:         | ████████████████████ | 24.835%
/model.10/m/m.0/attn/proj/conv/Conv:         | ███████████████      | 18.632%
/model.23/cv2.2/cv2.2.1/conv/Conv:           | ██████████████       | 17.908%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | ██████████████       | 16.922%
/model.23/cv2.2/cv2.2.0/conv/Conv:           | █████████████        | 16.754%
/model.22/m.0/cv3/conv/Conv:                 | ████████████         | 15.404%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | ████████████         | 15.042%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | ████████████         | 14.948%
/model.22/m.0/m/m.1/cv2/conv/Conv:           | ████████████         | 14.702%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | ███████████          | 13.683%
/model.22/cv2/conv/Conv:                     | ███████████          | 13.654%
/model.22/m.0/cv2/conv/Conv:                 | ███████████          | 13.514%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | ██████████           | 12.885%
/model.23/cv2.1/cv2.1.1/conv/Conv:           | █████████            | 10.865%
/model.23/cv2.0/cv2.0.1/conv/Conv:           | ████████             | 9.875%
/model.23/cv2.1/cv2.1.0/conv/Conv:           | ████████             | 9.658%
/model.22/cv1/conv/Conv:                     | ███████              | 8.917%
/model.10/m/m.0/attn/MatMul_1:               | ███████              | 8.368%
/model.23/cv2.2/cv2.2.2/Conv:                | ███████              | 8.156%
/model.22/m.0/m/m.0/cv2/conv/Conv:           | ██████               | 8.056%
/model.10/m/m.0/attn/qkv/conv/Conv:          | ██████               | 7.948%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | ██████               | 7.824%
/model.13/m.0/cv2/conv/Conv:                 | ██████               | 7.504%
/model.19/m.0/cv2/conv/Conv:                 | ██████               | 7.290%
/model.20/conv/Conv:                         | ██████               | 6.986%
/model.10/m/m.0/attn/pe/conv/Conv:           | ██████               | 6.926%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | █████                | 6.771%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | █████                | 6.756%
/model.22/m.0/m/m.1/cv1/conv/Conv:           | █████                | 6.465%
/model.22/m.0/m/m.0/cv1/conv/Conv:           | █████                | 6.274%
/model.19/cv2/conv/Conv:                     | █████                | 6.116%
/model.10/cv1/conv/Conv:                     | █████                | 5.868%
/model.13/cv2/conv/Conv:                     | █████                | 5.815%
/model.10/cv2/conv/Conv:                     | ████                 | 5.664%
/model.19/cv1/conv/Conv:                     | ████                 | 5.178%
/model.8/m.0/cv2/conv/Conv:                  | ████                 | 4.970%
/model.19/m.0/cv1/conv/Conv:                 | ████                 | 4.919%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | ████                 | 4.864%
/model.22/m.0/cv1/conv/Conv:                 | ████                 | 4.844%
/model.10/m/m.0/attn/MatMul:                 | ████                 | 4.650%
/model.13/cv1/conv/Conv:                     | ████                 | 4.564%
/model.23/cv2.0/cv2.0.0/conv/Conv:           | ███                  | 4.389%
/model.13/m.0/cv1/conv/Conv:                 | ███                  | 4.243%
/model.23/cv2.0/cv2.0.2/Conv:                | ███                  | 4.232%
/model.23/cv2.1/cv2.1.2/Conv:                | ███                  | 4.222%
/model.6/m.0/cv2/conv/Conv:                  | ███                  | 4.023%
/model.17/conv/Conv:                         | ███                  | 3.754%
/model.16/m.0/cv2/conv/Conv:                 | ███                  | 3.511%
/model.8/m.0/cv1/conv/Conv:                  | ███                  | 3.277%
/model.16/m.0/cv1/conv/Conv:                 | ██                   | 3.158%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | ██                   | 3.155%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | ██                   | 3.152%
/model.8/cv2/conv/Conv:                      | ██                   | 3.119%
/model.8/m.0/m/m.1/cv1/conv/Conv:            | ██                   | 3.106%
/model.8/m.0/cv3/conv/Conv:                  | ██                   | 3.083%
/model.6/m.0/cv3/conv/Conv:                  | ██                   | 3.068%
/model.8/cv1/conv/Conv:                      | ██                   | 3.035%
/model.16/cv2/conv/Conv:                     | ██                   | 3.002%
/model.2/cv2/conv/Conv:                      | ██                   | 2.992%
/model.8/m.0/m/m.0/cv2/conv/Conv:            | ██                   | 2.971%
/model.6/cv1/conv/Conv:                      | ██                   | 2.819%
/model.8/m.0/m/m.0/cv1/conv/Conv:            | ██                   | 2.809%
/model.10/m/m.0/ffn/ffn.0/conv/Conv:         | ██                   | 2.760%
/model.2/cv1/conv/Conv:                      | ██                   | 2.683%
/model.6/cv2/conv/Conv:                      | ██                   | 2.630%
/model.8/m.0/m/m.1/cv2/conv/Conv:            | ██                   | 2.615%
/model.9/cv2/conv/Conv:                      | ██                   | 2.540%
/model.3/conv/Conv:                          | ██                   | 2.503%
/model.2/m.0/cv2/conv/Conv:                  | ██                   | 2.474%
/model.6/m.0/m/m.0/cv1/conv/Conv:            | ██                   | 2.273%
/model.6/m.0/m/m.0/cv2/conv/Conv:            | ██                   | 2.246%
/model.4/cv2/conv/Conv:                      | ██                   | 2.141%
/model.7/conv/Conv:                          | ██                   | 2.120%
/model.6/m.0/m/m.1/cv1/conv/Conv:            | ██                   | 2.069%
/model.5/conv/Conv:                          | ██                   | 2.015%
/model.16/cv1/conv/Conv:                     | █                    | 1.894%
/model.4/cv1/conv/Conv:                      | █                    | 1.793%
/model.4/m.0/cv1/conv/Conv:                  | █                    | 1.776%
/model.6/m.0/cv1/conv/Conv:                  | █                    | 1.731%
/model.6/m.0/m/m.1/cv2/conv/Conv:            | █                    | 1.550%
/model.4/m.0/cv2/conv/Conv:                  | █                    | 1.257%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | █                    | 0.886%
/model.1/conv/Conv:                          | █                    | 0.775%
/model.23/cv3.2/cv3.2.2/Conv:                | █                    | 0.771%
PPQ_Operation_2:                             |                      | 0.696%
/model.9/cv1/conv/Conv:                      |                      | 0.695%
/model.2/m.0/cv1/conv/Conv:                  |                      | 0.534%
/model.23/cv3.1/cv3.1.2/Conv:                |                      | 0.339%
/model.23/cv3.0/cv3.0.2/Conv:                |                      | 0.190%
PPQ_Operation_0:                             |                      | 0.110%
/model.0/conv/Conv:                          |                      | 0.099%
Analysing Layerwise quantization error:: 100%|██████████| 91/91 [04:13<00:00,  2.79s/it]
Layer                                        | NOISE:SIGNAL POWER RATIO
/model.22/cv1/conv/Conv:                     | ████████████████████ | 0.244%
/model.9/cv2/conv/Conv:                      | █████████████        | 0.156%
/model.10/cv1/conv/Conv:                     | ███████████          | 0.132%
/model.1/conv/Conv:                          | ██████               | 0.077%
/model.4/cv1/conv/Conv:                      | ██████               | 0.074%
/model.16/cv1/conv/Conv:                     | █████                | 0.066%
/model.0/conv/Conv:                          | █████                | 0.061%
/model.2/cv1/conv/Conv:                      | █████                | 0.060%
/model.23/cv2.0/cv2.0.0/conv/Conv:           | ████                 | 0.052%
PPQ_Operation_0:                             | ████                 | 0.047%
/model.2/m.0/cv1/conv/Conv:                  | ████                 | 0.045%
/model.10/m/m.0/attn/pe/conv/Conv:           | ██                   | 0.029%
/model.2/m.0/cv2/conv/Conv:                  | ██                   | 0.029%
/model.10/m/m.0/attn/MatMul:                 | ██                   | 0.025%
/model.6/cv1/conv/Conv:                      | ██                   | 0.025%
/model.22/m.0/m/m.0/cv1/conv/Conv:           | ██                   | 0.023%
/model.16/cv2/conv/Conv:                     | ██                   | 0.021%
/model.16/m.0/cv2/conv/Conv:                 | ██                   | 0.020%
/model.19/m.0/cv1/conv/Conv:                 | ██                   | 0.020%
/model.4/m.0/cv1/conv/Conv:                  | █                    | 0.018%
/model.19/cv2/conv/Conv:                     | █                    | 0.017%
/model.4/m.0/cv2/conv/Conv:                  | █                    | 0.016%
/model.10/m/m.0/attn/qkv/conv/Conv:          | █                    | 0.016%
/model.19/cv1/conv/Conv:                     | █                    | 0.015%
/model.13/cv2/conv/Conv:                     | █                    | 0.015%
/model.23/cv2.1/cv2.1.0/conv/Conv:           | █                    | 0.013%
/model.23/cv2.2/cv2.2.1/conv/Conv:           | █                    | 0.012%
/model.13/cv1/conv/Conv:                     | █                    | 0.012%
/model.6/cv2/conv/Conv:                      | █                    | 0.011%
/model.13/m.0/cv1/conv/Conv:                 | █                    | 0.011%
/model.8/cv1/conv/Conv:                      | █                    | 0.010%
/model.13/m.0/cv2/conv/Conv:                 | █                    | 0.010%
/model.5/conv/Conv:                          | █                    | 0.010%
/model.6/m.0/m/m.1/cv1/conv/Conv:            | █                    | 0.009%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | █                    | 0.008%
/model.23/cv2.2/cv2.2.0/conv/Conv:           | █                    | 0.008%
/model.23/cv2.1/cv2.1.1/conv/Conv:           | █                    | 0.008%
/model.19/m.0/cv2/conv/Conv:                 | █                    | 0.008%
/model.8/cv2/conv/Conv:                      | █                    | 0.008%
/model.9/cv1/conv/Conv:                      | █                    | 0.008%
/model.23/cv2.0/cv2.0.1/conv/Conv:           | █                    | 0.007%
/model.16/m.0/cv1/conv/Conv:                 | █                    | 0.007%
/model.17/conv/Conv:                         | █                    | 0.007%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | █                    | 0.007%
/model.10/m/m.0/ffn/ffn.1/conv/Conv:         | █                    | 0.007%
/model.22/m.0/cv1/conv/Conv:                 |                      | 0.006%
/model.10/cv2/conv/Conv:                     |                      | 0.006%
/model.23/cv2.0/cv2.0.2/Conv:                |                      | 0.006%
/model.23/cv2.2/cv2.2.2/Conv:                |                      | 0.005%
/model.23/cv2.1/cv2.1.2/Conv:                |                      | 0.005%
/model.22/m.0/cv3/conv/Conv:                 |                      | 0.005%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: |                      | 0.005%
/model.22/cv2/conv/Conv:                     |                      | 0.005%
/model.7/conv/Conv:                          |                      | 0.004%
/model.6/m.0/cv3/conv/Conv:                  |                      | 0.004%
/model.10/m/m.0/ffn/ffn.0/conv/Conv:         |                      | 0.004%
/model.8/m.0/m/m.1/cv2/conv/Conv:            |                      | 0.004%
/model.22/m.0/m/m.1/cv1/conv/Conv:           |                      | 0.004%
/model.8/m.0/m/m.1/cv1/conv/Conv:            |                      | 0.004%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: |                      | 0.003%
/model.8/m.0/cv1/conv/Conv:                  |                      | 0.003%
/model.10/m/m.0/attn/proj/conv/Conv:         |                      | 0.003%
/model.22/m.0/m/m.0/cv2/conv/Conv:           |                      | 0.003%
PPQ_Operation_2:                             |                      | 0.003%
/model.8/m.0/cv3/conv/Conv:                  |                      | 0.003%
/model.6/m.0/m/m.0/cv1/conv/Conv:            |                      | 0.003%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: |                      | 0.002%
/model.6/m.0/m/m.1/cv2/conv/Conv:            |                      | 0.002%
/model.8/m.0/m/m.0/cv2/conv/Conv:            |                      | 0.002%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: |                      | 0.002%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: |                      | 0.002%
/model.10/m/m.0/attn/MatMul_1:               |                      | 0.002%
/model.22/m.0/m/m.1/cv2/conv/Conv:           |                      | 0.001%
/model.6/m.0/m/m.0/cv2/conv/Conv:            |                      | 0.001%
/model.8/m.0/m/m.0/cv1/conv/Conv:            |                      | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: |                      | 0.001%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: |                      | 0.001%
/model.2/cv2/conv/Conv:                      |                      | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: |                      | 0.001%
/model.6/m.0/cv1/conv/Conv:                  |                      | 0.001%
/model.23/cv3.2/cv3.2.2/Conv:                |                      | 0.001%
/model.20/conv/Conv:                         |                      | 0.001%
/model.23/cv3.1/cv3.1.2/Conv:                |                      | 0.001%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: |                      | 0.001%
/model.6/m.0/cv2/conv/Conv:                  |                      | 0.001%
/model.23/cv3.0/cv3.0.2/Conv:                |                      | 0.000%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: |                      | 0.000%
/model.8/m.0/cv2/conv/Conv:                  |                      | 0.000%
/model.22/m.0/cv2/conv/Conv:                 |                      | 0.000%
/model.3/conv/Conv:                          |                      | 0.000%
/model.4/cv2/conv/Conv:                      |                      | 0.000%

Quantization error analysis

After using 16-bits quantization on layers with higher layer-wise error and employing horizontal layer split pass, the quantized model’s mAP50:95 on COCO val2017 improves to 33.4% with the same inputs. Additionally, a noticeable decrease in cumulative error of output layers can be observed.

The graphwise error for the output layers of the model, /model.23/cv3.2/cv3.2.2/Conv, /model.23/cv2.2/cv2.2.2/Conv, /model.23/cv3.1/cv3.1.2/Conv, /model.23/cv2.1/cv2.1.2/Conv, /model.23/cv3.0/cv3.0.2/Conv and /model.23/cv2.0/cv2.0.2/Conv, are 0.771%, 8.156%, 0.339%, 4.222%, 0.190% and 4.232% respectively.

Quantization-Aware Training

To further improve the accuracy of the quantized model, we adopt the quantization-aware training(QAT) strategy. Here, QAT is performed based on 8-bit quantization.

Quantization settings

Quantization results

Layer                                        | NOISE:SIGNAL POWER RATIO
/model.10/m/m.0/ffn/ffn.1/conv/Conv:         | ████████████████████ | 29.837%
/model.10/m/m.0/attn/proj/conv/Conv:         | ████████████████     | 23.397%
/model.10/m/m.0/attn/pe/conv/Conv:           | ██████████           | 15.253%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | ██████████           | 14.819%
/model.10/m/m.0/attn/MatMul_1:               | ██████████           | 14.725%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | ██████████           | 14.315%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | █████████            | 14.212%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | █████████            | 14.187%
/model.10/m/m.0/attn/qkv/conv/Conv:          | █████████            | 13.797%
/model.23/cv2.2/cv2.2.0/conv/Conv:           | █████████            | 13.721%
/model.22/m.0/cv2/conv/Conv:                 | █████████            | 13.540%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | █████████            | 13.408%
/model.8/m.0/cv2/conv/Conv:                  | █████████            | 12.809%
/model.22/m.0/cv3/conv/Conv:                 | ████████             | 12.623%
/model.23/cv2.1/cv2.1.1/conv/Conv:           | ████████             | 12.472%
/model.23/cv2.1/cv2.1.0/conv/Conv:           | ████████             | 12.177%
/model.22/m.0/m/m.1/cv2/conv/Conv:           | ████████             | 11.719%
/model.23/cv2.2/cv2.2.1/conv/Conv:           | ████████             | 11.711%
/model.10/cv1/conv/Conv:                     | ████████             | 11.589%
/model.22/cv2/conv/Conv:                     | ████████             | 11.551%
/model.23/cv2.0/cv2.0.1/conv/Conv:           | ████████             | 11.505%
/model.10/m/m.0/attn/MatMul:                 | ████████             | 11.346%
/model.22/cv1/conv/Conv:                     | ███████              | 10.201%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | ██████               | 9.710%
/model.13/m.0/cv2/conv/Conv:                 | ██████               | 9.538%
/model.20/conv/Conv:                         | ██████               | 8.870%
/model.19/m.0/cv2/conv/Conv:                 | ██████               | 8.713%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | █████                | 8.157%
/model.22/m.0/m/m.0/cv2/conv/Conv:           | █████                | 8.005%
/model.8/cv2/conv/Conv:                      | █████                | 7.952%
/model.8/m.0/cv1/conv/Conv:                  | █████                | 7.697%
/model.13/cv2/conv/Conv:                     | █████                | 7.557%
/model.19/cv2/conv/Conv:                     | █████                | 7.443%
/model.10/cv2/conv/Conv:                     | █████                | 7.403%
/model.6/m.0/cv2/conv/Conv:                  | █████                | 7.099%
/model.8/cv1/conv/Conv:                      | █████                | 6.996%
/model.19/cv1/conv/Conv:                     | █████                | 6.912%
/model.8/m.0/m/m.0/cv1/conv/Conv:            | █████                | 6.908%
/model.8/m.0/cv3/conv/Conv:                  | ████                 | 6.755%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | ████                 | 6.746%
/model.8/m.0/m/m.0/cv2/conv/Conv:            | ████                 | 6.743%
/model.8/m.0/m/m.1/cv1/conv/Conv:            | ████                 | 6.638%
/model.13/cv1/conv/Conv:                     | ████                 | 6.361%
/model.2/m.0/cv2/conv/Conv:                  | ████                 | 6.274%
/model.13/m.0/cv1/conv/Conv:                 | ████                 | 6.261%
/model.19/m.0/cv1/conv/Conv:                 | ████                 | 6.191%
/model.22/m.0/m/m.0/cv1/conv/Conv:           | ████                 | 6.036%
/model.23/cv2.2/cv2.2.2/Conv:                | ████                 | 5.999%
/model.22/m.0/m/m.1/cv1/conv/Conv:           | ████                 | 5.899%
/model.23/cv2.0/cv2.0.0/conv/Conv:           | ████                 | 5.618%
/model.8/m.0/m/m.1/cv2/conv/Conv:            | ████                 | 5.560%
/model.22/m.0/cv1/conv/Conv:                 | ███                  | 5.336%
/model.16/m.0/cv2/conv/Conv:                 | ███                  | 5.316%
/model.17/conv/Conv:                         | ███                  | 5.113%
/model.6/m.0/cv3/conv/Conv:                  | ███                  | 5.103%
/model.16/m.0/cv1/conv/Conv:                 | ███                  | 5.101%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | ███                  | 5.052%
/model.2/cv2/conv/Conv:                      | ███                  | 5.003%
/model.6/cv2/conv/Conv:                      | ███                  | 4.968%
/model.6/cv1/conv/Conv:                      | ███                  | 4.792%
/model.23/cv2.1/cv2.1.2/Conv:                | ███                  | 4.543%
/model.7/conv/Conv:                          | ███                  | 4.520%
/model.3/conv/Conv:                          | ███                  | 4.362%
/model.16/cv2/conv/Conv:                     | ███                  | 4.028%
/model.23/cv2.0/cv2.0.2/Conv:                | ███                  | 4.001%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | ███                  | 3.954%
/model.9/cv2/conv/Conv:                      | ███                  | 3.901%
/model.6/m.0/m/m.0/cv1/conv/Conv:            | ███                  | 3.891%
/model.10/m/m.0/ffn/ffn.0/conv/Conv:         | ██                   | 3.791%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | ██                   | 3.711%
/model.4/cv1/conv/Conv:                      | ██                   | 3.673%
/model.6/m.0/m/m.0/cv2/conv/Conv:            | ██                   | 3.620%
/model.6/m.0/m/m.1/cv1/conv/Conv:            | ██                   | 3.513%
/model.4/cv2/conv/Conv:                      | ██                   | 3.421%
/model.5/conv/Conv:                          | ██                   | 3.320%
/model.6/m.0/cv1/conv/Conv:                  | ██                   | 3.073%
/model.2/cv1/conv/Conv:                      | ██                   | 3.021%
/model.16/cv1/conv/Conv:                     | ██                   | 2.764%
/model.6/m.0/m/m.1/cv2/conv/Conv:            | ██                   | 2.454%
/model.4/m.0/cv1/conv/Conv:                  | ██                   | 2.408%
/model.4/m.0/cv2/conv/Conv:                  | █                    | 1.689%
/model.2/m.0/cv1/conv/Conv:                  | █                    | 1.602%
/model.9/cv1/conv/Conv:                      | █                    | 1.568%
/model.1/conv/Conv:                          | █                    | 1.205%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | █                    | 1.091%
/model.23/cv3.2/cv3.2.2/Conv:                |                      | 0.746%
/model.23/cv3.1/cv3.1.2/Conv:                |                      | 0.480%
/model.23/cv3.0/cv3.0.2/Conv:                |                      | 0.386%
/model.0/conv/Conv:                          |                      | 0.163%
Analysing Layerwise quantization error:: 100%|██████████| 89/89 [04:01<00:00,  2.72s/it]
Layer                                        | NOISE:SIGNAL POWER RATIO
/model.2/cv2/conv/Conv:                      | ████████████████████ | 0.935%
/model.9/cv2/conv/Conv:                      | ██████████████████   | 0.826%
/model.2/m.0/cv1/conv/Conv:                  | ███████████████      | 0.698%
/model.3/conv/Conv:                          | █████████████        | 0.611%
/model.4/cv2/conv/Conv:                      | ██████████           | 0.491%
/model.10/cv2/conv/Conv:                     | █████████            | 0.408%
/model.23/cv2.2/cv2.2.2/Conv:                | ██████               | 0.283%
/model.2/cv1/conv/Conv:                      | ██████               | 0.261%
/model.4/cv1/conv/Conv:                      | █████                | 0.249%
/model.1/conv/Conv:                          | █████                | 0.217%
/model.22/cv1/conv/Conv:                     | ████                 | 0.201%
/model.10/cv1/conv/Conv:                     | ███                  | 0.143%
/model.5/conv/Conv:                          | ███                  | 0.136%
/model.16/cv1/conv/Conv:                     | ███                  | 0.128%
/model.10/m/m.0/attn/pe/conv/Conv:           | ███                  | 0.120%
/model.0/conv/Conv:                          | ███                  | 0.118%
/model.16/m.0/cv1/conv/Conv:                 | ██                   | 0.105%
/model.16/cv2/conv/Conv:                     | ██                   | 0.094%
/model.16/m.0/cv2/conv/Conv:                 | ██                   | 0.092%
/model.23/cv2.0/cv2.0.0/conv/Conv:           | ██                   | 0.089%
/model.4/m.0/cv1/conv/Conv:                  | ██                   | 0.071%
/model.22/m.0/cv1/conv/Conv:                 | █                    | 0.067%
/model.19/cv2/conv/Conv:                     | █                    | 0.063%
/model.6/cv2/conv/Conv:                      | █                    | 0.061%
/model.4/m.0/cv2/conv/Conv:                  | █                    | 0.059%
/model.17/conv/Conv:                         | █                    | 0.054%
/model.13/cv2/conv/Conv:                     | █                    | 0.053%
/model.8/m.0/cv3/conv/Conv:                  | █                    | 0.051%
/model.6/cv1/conv/Conv:                      | █                    | 0.047%
/model.23/cv2.2/cv2.2.0/conv/Conv:           | █                    | 0.042%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | █                    | 0.041%
/model.13/cv1/conv/Conv:                     | █                    | 0.040%
/model.7/conv/Conv:                          | █                    | 0.038%
/model.10/m/m.0/attn/qkv/conv/Conv:          | █                    | 0.038%
/model.13/m.0/cv1/conv/Conv:                 | █                    | 0.033%
/model.23/cv2.1/cv2.1.0/conv/Conv:           | █                    | 0.031%
/model.6/m.0/m/m.1/cv1/conv/Conv:            | █                    | 0.028%
/model.19/m.0/cv2/conv/Conv:                 | █                    | 0.027%
/model.8/m.0/m/m.1/cv1/conv/Conv:            | █                    | 0.026%
/model.2/m.0/cv2/conv/Conv:                  | █                    | 0.026%
/model.19/m.0/cv1/conv/Conv:                 |                      | 0.022%
/model.6/m.0/cv3/conv/Conv:                  |                      | 0.021%
/model.19/cv1/conv/Conv:                     |                      | 0.021%
/model.9/cv1/conv/Conv:                      |                      | 0.016%
/model.22/m.0/m/m.1/cv1/conv/Conv:           |                      | 0.016%
/model.13/m.0/cv2/conv/Conv:                 |                      | 0.015%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: |                      | 0.015%
/model.22/m.0/m/m.0/cv1/conv/Conv:           |                      | 0.014%
/model.8/cv1/conv/Conv:                      |                      | 0.013%
/model.23/cv2.0/cv2.0.2/Conv:                |                      | 0.013%
/model.23/cv2.2/cv2.2.1/conv/Conv:           |                      | 0.012%
/model.10/m/m.0/ffn/ffn.0/conv/Conv:         |                      | 0.011%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: |                      | 0.011%
/model.8/cv2/conv/Conv:                      |                      | 0.011%
/model.23/cv2.1/cv2.1.2/Conv:                |                      | 0.010%
/model.22/m.0/cv3/conv/Conv:                 |                      | 0.010%
/model.23/cv2.1/cv2.1.1/conv/Conv:           |                      | 0.008%
/model.10/m/m.0/ffn/ffn.1/conv/Conv:         |                      | 0.008%
/model.23/cv2.0/cv2.0.1/conv/Conv:           |                      | 0.007%
/model.10/m/m.0/attn/proj/conv/Conv:         |                      | 0.007%
/model.8/m.0/cv1/conv/Conv:                  |                      | 0.007%
/model.22/m.0/m/m.0/cv2/conv/Conv:           |                      | 0.006%
/model.8/m.0/m/m.1/cv2/conv/Conv:            |                      | 0.005%
/model.22/cv2/conv/Conv:                     |                      | 0.005%
/model.20/conv/Conv:                         |                      | 0.005%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: |                      | 0.005%
/model.6/m.0/m/m.0/cv1/conv/Conv:            |                      | 0.005%
/model.8/m.0/m/m.0/cv1/conv/Conv:            |                      | 0.004%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: |                      | 0.003%
/model.8/m.0/m/m.0/cv2/conv/Conv:            |                      | 0.003%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: |                      | 0.003%
/model.6/m.0/cv1/conv/Conv:                  |                      | 0.003%
/model.23/cv3.2/cv3.2.2/Conv:                |                      | 0.003%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: |                      | 0.003%
/model.6/m.0/m/m.1/cv2/conv/Conv:            |                      | 0.003%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: |                      | 0.002%
/model.22/m.0/m/m.1/cv2/conv/Conv:           |                      | 0.002%
/model.6/m.0/m/m.0/cv2/conv/Conv:            |                      | 0.002%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: |                      | 0.002%
/model.10/m/m.0/attn/MatMul_1:               |                      | 0.002%
/model.23/cv3.0/cv3.0.2/Conv:                |                      | 0.001%
/model.23/cv3.1/cv3.1.2/Conv:                |                      | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: |                      | 0.001%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: |                      | 0.001%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: |                      | 0.001%
/model.6/m.0/cv2/conv/Conv:                  |                      | 0.000%
/model.10/m/m.0/attn/MatMul:                 |                      | 0.000%
/model.8/m.0/cv2/conv/Conv:                  |                      | 0.000%
/model.22/m.0/cv2/conv/Conv:                 |                      | 0.000%

Quantization error analysis

After applying QAT to 8-bit quantization, the quantized model’s mAP50:95 on COCO val2017 improves to 36.0% with the same inputs, while cumulative errors of out layers are significantly reduced. Compared to the other two quantization methods, the 8-bit QAT quantized model achieves the highest quantization accuracy with the lowest inference latency.

The graphwise error for the output layers of the model, /model.23/cv3.2/cv3.2.2/Conv, /model.23/cv2.2/cv2.2.2/Conv, /model.23/cv3.1/cv3.1.2/Conv, /model.23/cv2.1/cv2.1.2/Conv, /model.23/cv3.0/cv3.0.2/Conv and /model.23/cv2.0/cv2.0.2/Conv, are 0.746%, 5.999%, 0.480%, 4.543%, 0.386% and 4.001% respectively.

Note

If the model inference speed is a higher priority and a certain degree of accuracy loss is acceptable, you may consider quantizing the model with an input size of 320x320 for the YOLO11N model. The model inference speed of different input resolutions can be found in README.md .

Model deployment

example

Object detection base class Pre-process

ImagePreprocessor class contains the common pre-precoess pipeline, color conversion, crop, resize, normalization, quantize。

Post-process

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4