A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.databricks.com/aws/en/query/formats/mlflow-experiment below:

MLflow experiment | Databricks Documentation

MLflow experiment

The MLflow experiment data source provides a standard API to load MLflow experiment run data. You can load data from the notebook experiment, or you can use the MLflow experiment name or experiment ID.

Requirements​

Databricks Runtime 6.0 ML or above.

Load data from the notebook experiment​

To load data from the notebook experiment, use load().

Python

df = spark.read.format("mlflow-experiment").load()
display(df)

Scala

val df = spark.read.format("mlflow-experiment").load()
display(df)
Load data using experiment IDs​

To load data from one or more workspace experiments, specify the experiment IDs as shown.

Python

df = spark.read.format("mlflow-experiment").load("3270527066281272")
display(df)

Scala

val df = spark.read.format("mlflow-experiment").load("3270527066281272,953590262154175")
display(df)
Load data using experiment name​

You can also pass the experiment name to the load() method.

Python

expId = mlflow.get_experiment_by_name("/Shared/diabetes_experiment/").experiment_id
df = spark.read.format("mlflow-experiment").load(expId)
display(df)

Scala

val expId = mlflow.getExperimentByName("/Shared/diabetes_experiment/").get.getExperimentId
val df = spark.read.format("mlflow-experiment").load(expId)
display(df)
Filter data based on metrics and parameters​

The examples in this section show how you can filter data after loading it from an experiment.

Python

df = spark.read.format("mlflow-experiment").load("3270527066281272")
filtered_df = df.filter("metrics.loss < 0.01 AND params.learning_rate > '0.001'")
display(filtered_df)

Scala

val df = spark.read.format("mlflow-experiment").load("3270527066281272")
val filtered_df = df.filter("metrics.loss < 1.85 AND params.num_epochs > '30'")
display(filtered_df)
Schema​

The schema of the DataFrame returned by the data source is:

root
|-- run_id: string
|-- experiment_id: string
|-- metrics: map
| |-- key: string
| |-- value: double
|-- params: map
| |-- key: string
| |-- value: string
|-- tags: map
| |-- key: string
| |-- value: string
|-- start_time: timestamp
|-- end_time: timestamp
|-- status: string
|-- artifact_uri: string

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4