valid when z â â â ( â â , â 1 ] ⪠[ 1 , â ) ; see Figure 4.23.1(i).
For other continued fractions involving logarithms see Lorentzen and Waadeland (1992, pp. 566â568). See also Cuyt et al. (2008, pp. 196â200).
§4.9(ii) ExponentialsFor z â â ,
4.9.3 ez = 1 1 â z 1 + z 2 â z 3 + z 2 â z 5 + z 2 â ⢠⯠= 1 + z 1 â z 2 + z 3 â z 2 + z 5 â z 2 + z 7 â ⢠⯠= 1 + z 1 â ( z / 2 ) + z2 / ( 4 â 3 ) 1 + z2 / ( 4 â 15 ) 1 + z2 / ( 4 â 35 ) 1 + ⢠⯠⢠z2 / ( 4 ⢠( 4 ⢠n2 â 1 ) ) 1 + ⢠â¯where
For other continued fractions involving the exponential function see Lorentzen and Waadeland (1992, pp. 563â564). See also Cuyt et al. (2008, pp. 193â195).
§4.9(iii) PowersSee Cuyt et al. (2008, pp. 217â220).
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.5