In (4.8.1)â(4.8.4) z 1 ⢠z 2 â 0 .
This is interpreted that every value of Ln ⡠( z 1 ⢠z 2 ) is one of the values of Ln ⡠z 1 + Ln ⡠z 2 , and vice versa.
In (4.8.5)â(4.8.7) and (4.8.10) z â 0 .
4.8.6 ln â¡ ( zn ) = n ⢠ln â¡ z , n â ⤠, â Ï â¤ n ⢠ph â¡ z â¤ Ï , 4.8.8 Ln â¡ ( exp â¡ z ) = z + 2 ⢠k â¢ Ï â¢ i , k â ⤠,If a â 0 and az has its general value, then
4.8.11 Ln â¡ ( az ) = z ⢠Ln â¡ a + 2 ⢠k â¢ Ï â¢ i , k â ⤠.If a â 0 and az has its principal value, then
where the integer k is chosen so that â â¡ ( â i ⢠z ⢠ln â¡ a ) + 2 ⢠k â¢ Ï â [ â Ï , Ï ] .
§4.8(ii) Powers 4.8.14 a z 1 ⢠a z 2 = a z 1 + z 2 , a â 0 , 4.8.15 az ⢠bz = ( a ⢠b ) z , â Ï â¤ ph â¡ a + ph â¡ b â¤ Ï , 4.8.16 e z 1 ⢠e z 2 = e z 1 + z 2 , 4.8.17 ( e z 1 ) z 2 = e z 1 ⢠z 2 , â Ï â¤ â â¡ z 1 â¤ Ï .The restriction on z 1 can be removed when z 2 is an integer.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.5