Showing content from https://dlmf.nist.gov/4.35 below:
§4.35 Identities ⣠Hyperbolic Functions ⣠Chapter 4 Elementary Functions
§4.35 Identities Contents
- §4.35(i) Addition Formulas
- §4.35(ii) Squares and Products
- §4.35(iii) Multiples of the Argument
- §4.35(iv) Real and Imaginary Parts; Moduli
§4.35(i) Addition Formulas 4.35.1 sinh â¡ ( u ± v ) = sinh â¡ u ⢠cosh â¡ v ± cosh â¡ u ⢠sinh â¡ v , 4.35.2 cosh â¡ ( u ± v ) = cosh â¡ u ⢠cosh â¡ v ± sinh â¡ u ⢠sinh â¡ v , 4.35.3 tanh â¡ ( u ± v ) = tanh â¡ u ± tanh â¡ v 1 ± tanh â¡ u ⢠tanh â¡ v , 4.35.4 coth â¡ ( u ± v ) = ± coth â¡ u ⢠coth â¡ v + 1 coth â¡ u ± coth â¡ v . 4.35.5 sinh â¡ u + sinh â¡ v = 2 ⢠sinh â¡ ( u + v 2 ) ⢠cosh â¡ ( u â v 2 ) , 4.35.6 sinh â¡ u â sinh â¡ v = 2 ⢠cosh â¡ ( u + v 2 ) ⢠sinh â¡ ( u â v 2 ) , 4.35.7 cosh â¡ u + cosh â¡ v = 2 ⢠cosh â¡ ( u + v 2 ) ⢠cosh â¡ ( u â v 2 ) , 4.35.8 cosh â¡ u â cosh â¡ v = 2 ⢠sinh â¡ ( u + v 2 ) ⢠sinh â¡ ( u â v 2 ) , 4.35.9 tanh â¡ u ± tanh â¡ v = sinh â¡ ( u ± v ) cosh â¡ u ⢠cosh â¡ v , 4.35.10 coth â¡ u ± coth â¡ v = sinh â¡ ( v ± u ) sinh â¡ u ⢠sinh â¡ v . §4.35(ii) Squares and Products 4.35.14 2 ⢠sinh â¡ u ⢠sinh â¡ v = cosh â¡ ( u + v ) â cosh â¡ ( u â v ) , 4.35.15 2 ⢠cosh â¡ u ⢠cosh â¡ v = cosh â¡ ( u + v ) + cosh â¡ ( u â v ) , 4.35.16 2 ⢠sinh â¡ u ⢠cosh â¡ v = sinh â¡ ( u + v ) + sinh â¡ ( u â v ) . 4.35.17 sinh2 â¡ u â sinh2 â¡ v = sinh â¡ ( u + v ) ⢠sinh â¡ ( u â v ) , 4.35.18 cosh2 â¡ u â cosh2 â¡ v = sinh â¡ ( u + v ) ⢠sinh â¡ ( u â v ) , 4.35.19 sinh2 â¡ u + cosh2 â¡ v = cosh â¡ ( u + v ) ⢠cosh â¡ ( u â v ) . §4.35(iii) Multiples of the Argument
The square roots assume their principal value on the positive real axis, and are determined by continuity elsewhere.
4.35.23 sinh â¡ ( â z ) = â sinh â¡ z , 4.35.24 cosh â¡ ( â z ) = cosh â¡ z , 4.35.25 tanh â¡ ( â z ) = â tanh â¡ z . §4.35(iv) Real and Imaginary Parts; Moduli
With z = x + i ⢠y
4.35.34 sinh â¡ z = sinh â¡ x ⢠cos â¡ y + i ⢠cosh â¡ x ⢠sin â¡ y , 4.35.35 cosh â¡ z = cosh â¡ x ⢠cos â¡ y + i ⢠sinh â¡ x ⢠sin â¡ y , 4.35.36 tanh â¡ z = sinh â¡ ( 2 ⢠x ) + i ⢠sin â¡ ( 2 ⢠y ) cosh â¡ ( 2 ⢠x ) + cos â¡ ( 2 ⢠y ) , 4.35.37 coth â¡ z = sinh â¡ ( 2 ⢠x ) â i ⢠sin â¡ ( 2 ⢠y ) cosh â¡ ( 2 ⢠x ) â cos â¡ ( 2 ⢠y ) .
RetroSearch is an open source project built by @garambo
| Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.5