A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://dlmf.nist.gov/4.31 below:

§4.31 Special Values and Limits ‣ Hyperbolic Functions ‣ Chapter 4 Elementary Functions

§4.31 Special Values and Limits ⓘ
Keywords:
hyperbolic functions, limits, special values
Notes:
See Hobson (1928, p. 326), Levinson and Redheffer (1970, p. 61).
Permalink:
http://dlmf.nist.gov/4.31
See also:
Annotations for Ch.4
Table 4.31.1: Hyperbolic functions: values at multiples of 1 2 ⁢ π ⁢ i . z 0 1 2 ⁢ π ⁢ i π ⁢ i 3 2 ⁢ π ⁢ i ∞ sinh ⁡ z 0 i 0 − i ∞ cosh ⁡ z 1 0 − 1 0 ∞ tanh ⁡ z 0 ∞ ⁢ i 0 − ∞ ⁢ i 1 csch ⁡ z ∞ − i ∞ i 0 sech ⁡ z 1 ∞ − 1 ∞ 0 coth ⁡ z ∞ 0 ∞ 0 1 ⓘ
Symbols:
π : the ratio of the circumference of a circle to its diameter, csch ⁡ z : hyperbolic cosecant function, cosh ⁡ z : hyperbolic cosine function, coth ⁡ z : hyperbolic cotangent function, sech ⁡ z : hyperbolic secant function, sinh ⁡ z : hyperbolic sine function, tanh ⁡ z : hyperbolic tangent function, i : imaginary unit and z : complex variable
A&S Ref:
4.5.61
Permalink:
http://dlmf.nist.gov/4.31.T1
See also:
Annotations for §4.31 and Ch.4
4.31.1 lim z → 0 sinh ⁡ z z = 1 , ⓘ
Symbols:
sinh ⁡ z : hyperbolic sine function and z : complex variable
Permalink:
http://dlmf.nist.gov/4.31.E1
Encodings:
TeX, pMML, png
See also:
Annotations for §4.31 and Ch.4
4.31.2 lim z → 0 tanh ⁡ z z = 1 , ⓘ
Symbols:
tanh ⁡ z : hyperbolic tangent function and z : complex variable
Permalink:
http://dlmf.nist.gov/4.31.E2
Encodings:
TeX, pMML, png
See also:
Annotations for §4.31 and Ch.4
4.31.3 lim z → 0 cosh ⁡ z − 1 z2 = 1 2 . ⓘ
Symbols:
cosh ⁡ z : hyperbolic cosine function and z : complex variable
Permalink:
http://dlmf.nist.gov/4.31.E3
Encodings:
TeX, pMML, png
See also:
Annotations for §4.31 and Ch.4

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.5