A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://dlmf.nist.gov/4.26 below:

§4.26 Integrals ‣ Trigonometric Functions ‣ Chapter 4 Elementary Functions

§4.26 Integrals Contents
  1. §4.26(i) Introduction
  2. §4.26(ii) Indefinite Integrals
  3. §4.26(iii) Definite Integrals
  4. §4.26(iv) Inverse Trigonometric Functions
  5. §4.26(v) Compendia
§4.26(i) Introduction

Throughout this section the variables are assumed to be real. The results in §§4.26(ii) and 4.26(iv) can be extended to the complex plane by using continuous branches and avoiding singularities.

§4.26(ii) Indefinite Integrals 4.26.1 ∫ sin ⁡ x ⁢ d x = − cos ⁡ x , 4.26.2 ∫ cos ⁡ x ⁢ d x = sin ⁡ x . 4.26.3 ∫ tan ⁡ x ⁢ d x = − ln ⁡ ( cos ⁡ x ) , − 1 2 ⁢ π < x < 1 2 ⁢ π . 4.26.4 ∫ csc ⁡ x ⁢ d x = ln ⁡ ( tan ⁡ 1 2 ⁢ x ) , 0 < x < π .

For the right-hand side see (4.23.41) and (4.23.42).

§4.26(iii) Definite Integrals

Throughout this subsection m and n are integers.

Orthogonality Properties 4.26.9 ∫ 0 π sin ⁡ ( m ⁢ t ) ⁢ sin ⁡ ( n ⁢ t ) ⁢ d t = 0 , m ≠ n , 4.26.10 ∫ 0 π cos ⁡ ( m ⁢ t ) ⁢ cos ⁡ ( n ⁢ t ) ⁢ d t = 0 , m ≠ n , 4.26.12 ∫ 0 ∞ sin ⁡ ( m ⁢ t ) t ⁢ d t = { 1 2 ⁢ π , m > 0 , 0 , m = 0 , − 1 2 ⁢ π , m < 0 . §4.26(iv) Inverse Trigonometric Functions §4.26(v) Compendia

Extensive compendia of indefinite and definite integrals of trigonometric and inverse trigonometric functions include Apelblat (1983, pp. 48–109), Bierens de Haan (1939), Gradshteyn and Ryzhik (2015, Chapters 2–4), Gröbner and Hofreiter (1949, pp. 116–139), Gröbner and Hofreiter (1950, pp. 94–160), and Prudnikov et al. (1986a, §§1.5, 1.7, 2.5, 2.7).


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.5